Multidimensional Cognitive Ability,

Intermediate Channels, and Financial Outcomes*

Ştefania Simion ${ }^{\dagger} \quad$ Tomasz Sulka ${ }^{\ddagger}$

February 2024

Abstract

In this paper, we examine what pathways might account for the observed relationships between measures of cognitive ability and some important financial outcomes, and which dimensions of cognitive ability have the most predictive power. We begin by proposing a novel conceptual framework that accounts for several plausible "channels" through which differences in cognitive ability could affect financial outcomes. Subsequently, we put the framework to test using the English Longitudinal Study of Ageing data. We find that numeracy, literacy, and working memory are strong predictors of different measures of wealth level and composition, after controlling for a rich set of demographic characteristics. Despite the fact that our key channels, planning and self-control, have an even greater predictive power and are indeed correlated with relevant dimensions of cognitive ability, they do not fully account for the pathways from cognitive ability to financial outcomes.

$J E L:$ C13, D14, D91, J14, G41, G51
APA PsycInfo: 2240, 3920
Keywords: Household Wealth; Cognitive Ability; Numeracy; Planning; Self-Control

[^0]
1 Introduction

A growing strand of the empirical literature attempts to explain differences in financial outcomes attained by individuals with similar socio-demographic characteristics by accounting for variation in their cognitive ability (see Table 1 for an overview). While different measures of cognitive ability have been shown to improve the predictive power of empirical models, with the exception of financial knowledge accumulation (Gustman et al. 2012; Jappelli and Padula 2013; Hung et al. 2018), the existing literature makes little attempt to put forward, and test the validity of, specific pathways through which the reported relationships between cognitive ability and financial outcomes may materialise. Moreover, distinct measures of cognitive ability have been used as predictors across studies, which appears to be dictated partly by data availability and partly by lack of a unifying framework.

In this paper, we aim to fill this gap by addressing two broad questions: (i) What pathways can account for the observed relationships between cognitive ability and financial outcomes?; (ii) Which dimensions of cognitive ability are the strongest predictors? ${ }^{1}$ Building on recent advances in behavioural economics, we begin by proposing a conceptual framework that accounts for several plausible "channels" through which cognitive ability could affect financial outcomes, namely revealed preferences, financial literacy, planning, and self-control. We refer to the latter two as "ultimate-node channels", as in our framework only planning and self-control are directly linked to the outcome of interest. Subsequently, we put the framework to test by estimating some key relationships using the first wave of the English Longitudinal Study of Ageing (ELSA), a representative dataset containing reliable measures of different dimensions of cognitive ability as well as various financial outcomes.

More specifically, we construct measures of five different dimensions of cognitive ability (numeracy, working memory, verbal fluency, literacy, accuracy and speed of mental processing), two ultimate-node channels (planning and self-control), and six financial outcomes (financial wealth, total wealth, net total wealth, being in debt, stock ownership, having a tax-advantaged saving account). We find that numeracy, literacy, and working memory are strong predictors of these financial outcomes, save for indebtedness, after controlling for a rich set of demographic characteristics.

[^1]Table 1: Previous studies on the relationship between cognitive ability and financial outcomes

Paper	Dataset	Dependent variables	Key explanatory variables	Main findings
Agarwal and Mazumder 2013	AFQT	Financial mistakes in credit card usage and home loan applications	Mathematical ability, verbal ability, education	Mathematical, but not verbal, ability is a strong predictor of lower probability of making a financial mistake in either domain.
Banks and Oldfield 2007	ELSA	Financial wealth, portfolio composition, financial knowledge, self-assessed preparedness for retirement	Numeracy, executive function, memory, education, wealth level	Numeracy is as strong a predictor of financial wealth level and stock ownership as education, but has a greater effect on financial knowledge and preparedness for retirement.
Banks et al. 2010	ELSA	Financial wealth trajectory, replacement rate, expectations regarding retirement, subjective well-being	Numeracy, executive function, memory, literacy, education, wealth level	Higher numeracy associated with a more 'hump-shaped' wealth trajectory, but has no effect on replacement rates and well-being.
Banks et al. 2015	ELSA	Annuitisation choices	Numeracy, financial literacy (proxy), executive function, memory, education, wealth level	Numeracy has a strong effect on the propensity to 'shop around' for an annuity, but not on the income drawdown.
Christelis et al. 2010	SHARE	Stock ownership	Numeracy, executive function, memory, education, social activity	All 3 dimensions of cognitive ability have strong, comparable effects on holding stocks, but not bonds.
Gustman et al. 2012	HRS	Pension and non-pension wealth, knowledge of pensions	Numeracy, cognitive status, education	No evidence that pension-specific knowledge accounts for the impact of numeracy on wealth.
Hung et al. 2018	UAS (HRS)	Dedicated retirement savings, contributing to a workplace pension, planning, selfassessed preparedness for retirement (Withdrawing retirement funds, claiming social security benefits)	Fluid intelligence, crystallised intelligence, financial literacy, education (General cognition, education)	Financial literacy has the largest effect on 'prudent' saving behaviours and accounts for some of the effect of cognitive abilities. (Steeper cognitive decline is associated with pension wealth decumulation and claiming social security.)
Smith et al. 2010	HRS	Total wealth, financial wealth, proportion of financial wealth held in stocks, financial decision-maker (FDM)	Numeracy, cognitive status, memory, education, financial respondent	Numeracy, especially of FDM, has the strongest effect on wealth levels and stock holding. Husband's numeracy is the strongest determinant of FDM.

Regarding the mediating role of planning and self-control, we find that these channels (especially planning) are more strongly correlated with the financial outcomes of interest than any of the cognitive ability measures. Including these variables reduces the coefficients on key dimensions of cognitive ability only slightly, with non-significant changes in estimates. For instance, a one standard deviation increase in numeracy index is associated with a 0.11 standard deviation increase in financial wealth, irrespective of whether or not the ultimate-node channels are controlled for. At the same time, the change in financial wealth associated with a one standard deviation increase in literacy drops from an increase of 0.05 standard deviations, when we do not control for these channels, to an increase of 0.04 standard deviations, when we do.

Thus, it appears that a priori plausible channels do not fully account for the pathways from cognitive ability to financial outcomes, despite the fact that in our setting these channels are indeed correlated with the relevant dimensions of cognitive ability. We interpret this puzzle as highlighting an important gap between the empirical and theoretical strands of the behavioural economics literature. Moreover, given that concerns related to bounded rationality have an increasing impact on policy design in the domain of household finance (see the reviews by Bernheim and Taubinsky (2018) and Beshears et al. (2018)), emphasising and addressing this discrepancy should have important practical implications.

We contribute to a recent strand of the empirical literature documenting the correlation between particular measures of cognitive ability and financial outcomes of interest (see Table 1). ${ }^{2}$ In the most closely related papers, Banks and Oldfield (2007) and Banks et al. (2010) also use the initial waves of ELSA and find strong correlations between numeracy and variables related to financial preparation for retirement, such as financial wealth holdings, portfolio composition, savings, and self-reported preparedness for retirement. Martin-Bassols (2024) exploits the longitudinal aspect of ELSA to document a strong link between cognitive ability, as well as its deterioration, and investment behaviour. Complementing these studies, we formulate a novel conceptual framework aimed at explaining the pathways through which heterogeneity in cognitive ability may manifest itself, which we then use to guide our empirical analysis.

The rest of the paper is structured as follows. Section 2 discusses the theoretical framework. Section 3 presents the data and section 4 describes the empirical strategy. Section 5 reports the results and section 6 concludes.

[^2]
2 Theoretical Framework

In this section, we propose a novel conceptual framework which accounts in a coherent way for several plausible pathways through which the associations between cognitive ability and economic outcomes may arise. In doing so, we aim to bridge several seemingly disconnected strands of the behavioural economics literature, which have mostly speculated about a single pathway, but did not consider the alternatives put forward elsewhere.

We illustrate the proposed framework diagrammatically in Figure 1. In the diagram, an individual's cognitive ability affects their economic outcomes via three ultimate-node channels which are directly linked to the outcome of interest, i.e. planning, self-control, and residual mistakes. Moreover, cognitive ability affects an individual's financial knowledge and reveled preferences, which determine the features of their plan.

Figure 1: Conceptual Framework

More precisely, consider an individual with a given endowment of multidimensional cognitive ability (see footnote 1 for a definition of cognitive ability and Craik and Bialystok (2006) for the evidence on stability of cognitive ability in adulthood). Following the model of decision-making motivated and analysed in Sulka (2023), suppose that an economic outcome of interest reflects a combination of "planning" (i.e., identifying the desired action and an optimal way of implementing it) and "self-control" (i.e., carrying out the resulting plan). These two stages of decision-making are often separated, either in time (e.g., saving for retirement throughout one's working life) or in space (e.g., exercising at a gym). Of course, one can imagine tasks with either a relatively more dominant self-control component (e.g., quitting smoking) or a relatively more dominant planning component (e.g., opening a bank account with the lowest fees), but the important financial outcomes that we analyse later on would intuitively rely
on both planning and self-control. Below, we discuss the empirical evidence motivating our theoretical framework.

Planning. Empirically, a strong effect of planning behaviour on important economic outcomes has been documented by multiple studies (Ameriks et al., 2003; Lusardi and Mitchell, 2007, 2011), but the determinants of planning itself remain largely unexplored. Despite an intuitive notion that planning, which relies heavily on the ability to accumulate and process information, might reflect one's cognitive ability, we are unaware of any existing empirical tests of the relationship between cognitive ability and planning behaviour.

Conditional on engaging in planning, how might the resulting plans vary across individuals? We posit that the agent's accumulated financial knowledge and their revealed preferences act as inputs into the planning stage, affecting the efficiency and the objectives of their plan, respectively. In other words, while preferences determine the agent's goals, financial knowledge enables them to achieve those goals in an efficient manner (e.g., by not taking on uncompensated financial risks).

Cognitive ability can be seen as a trait determining the cost of information processing in models of endogenous financial knowledge accumulation (Jappelli and Padula, 2013; Lusardi et al., 2017). Naturally, a lower cost of information processing should result in greater financial knowledge and, consequently, improved economic outcomes. ${ }^{3}$ While the financial knowledge channel has been explicitly proposed in the existing literature as a pathway between cognitive ability and financial outcomes, the available results indicate that it does not account fully for the predictive power of cognitive ability (Banks et al., 2010; Gustman et al., 2012; Banks et al., 2015).

Another strand of the literature has put forward that cognitive ability influences revealed time and risk preferences, as its specific dimensions are correlated with the displayed patience and risk-taking (Frederick, 2005; Dohmen et al., 2010; Benjamin et al., 2013). The association between cognitive ability and patience as well as risk-taking (in small-stakes gambles) could be rationalised by greater cognitive ability enabling an individual to overcome their impulsivity and to bracket the risks more broadly. ${ }^{4}$

Self-Control. In a similar vein, the variation in cognitive ability could manifest itself via self-control, understood as a capability to forego short-term temptations for the sake of implementing a predetermined

[^3]plan (Gul and Pesendorfer, 2001; Benhabib and Bisin, 2005; Fudenberg and Levine, 2006). Empirical support for this channel comes from the above studies reporting a strong link between cognitive ability and patience, the observation that exogenous increases in cognitive load lead to more impulsive choices (Benjamin et al., 2013), and the neuroscientific research on the processes behind impulse control (Camerer, 2013; Duckworth et al., 2018). ${ }^{5}$

Residual Mistakes. Most directly, cognitive ability can affect the quality of decision-making by facilitating deliberation and numerical reasoning, thus minimising the chance of residual mistakes, which arise independently of a specific plan and the ability to carry it out. For instance, Agarwal and Mazumder (2013) find that the members of the US military who perform worse on a math test are also more likely to make a financial mistake when using their credit card or applying for a home loan. ${ }^{6}$

In Appendix A, we present a formal application of the framework to an inter-temporal consumption smoothing problem, in order to illustrate how these different considerations can be captured within a standard economic model of decision-making.

3 Data

In this section, we describe the data used in the analysis, presenting summary statistics for the main controls, the different measures of cognitive ability, the channels, and the financial outcomes.

We use the first wave of the English Longitudinal Study of Ageing (ELSA), a longitudinal database which follows a representative sample of individuals living in England, aged 50 or more. ELSA is a very rich dataset, containing detailed measures reflecting the respondent's financial situation, demographic characteristics, and cognitive ability, which makes it uniquely suited to the purposes of our analysis (Banks et al., 2003).

The survey has been conducted biannually since 2002, but not all measures of cognitive ability have been collected in every wave. Thus, our main sample is based on the first wave, which has collected data on most of our measures of cognitive ability (see details in Subsection 3.2). The initial sample of wave 1 includes 7,912 household heads, but as we restrict the sample to individuals between 50 and 70 years

[^4]old, we remain with 5,216 individuals. The sample gets further restricted to 4,838 individuals once we account for missing information on the main demographic measures. We lose a further 1,095 individuals once we account for missing information on the measures of cognitive ability and channels. This gives us a final sample of 3,743 individuals. ${ }^{7}$

	Mean (1)	SD (2)	Min (3)	Max (4)	N (5)
Age	59.041	5.945	50.000	70.000	3,743
Year of birth	$1,942.599$	5.958	1,931	1,952	3,743
Female	0.322	0.467	0.000	1.000	3,743
White	0.973	0.163	0.000	1.000	3,743
Whether kids	0.859	0.348	0.000	1.000	3,743
Marital Status					
Married/co-habitating	0.673	0.469	0.000	1.000	3,743
Single	0.063	0.242	0.000	1.000	3,743
Widowed	0.107	0.309	0.000	1.000	3,743
Separated/Divorced	0.158	0.364	0.000	1.000	3,743
Health Status					
Excellent/Very Good Health	0.476	0.499	0.000	1.000	3,743
Good Health	0.304	0.460	0.000	1.000	3,743
Fair/Poor Health	0.220	0.414	0.000	1.000	3,743
Highest education level attained					
No Qualifications	0.073	0.260	0.000	1.000	3,743
Less than High-school	0.624	0.484	0.000	1.000	3,743
High-school	0.137	0.344	0.000	1.000	3,743
More than High-school	0.166	0.372	0.000	1.000	3,743
Social Class					
Other	0.205	0.404	0.000	1.000	3,743
Disadvantaged	0.044	0.205	0.000	1.000	3,743
Routine	0.144	0.351	0.000	1.000	3,743
Intermediate	0.362	0.481	0.000	1.000	3,743
High	0.245	0.430	0.000	1.000	3,743

Notes: The sample is based on wave 1 of ELSA. The table shows the mean, standard deviation, minimum and maximum value and the number of observations for each variable. All measures are weighted using the survey weights.

Table 2: Summary statistics - Demographics

3.1 Demographics

In Table 2, we present the main demographic characteristics of the individuals in our sample. On average, respondents are around 59 years old, 32% are females, and 97% are white. Moreover, 86% report to have had children and most of the individuals are married or co-habitating (67\%), while approximately 11% are widowed, and 16% are separated or divorced. Around 48% of the sample report an excellent or a very good health status. Regarding education, the majority of individuals have less than a high-school

[^5]degree (62%). Finally, as a proxy for socio-economic background, we use the main carer's job during the respondent's childhood to define their social class. Approximately 25% of individuals belong to a high social class, while 36% belong to an intermediate social class. ${ }^{8}$

3.2 Measures of Cognitive Ability

We next turn to the measures of cognitive ability we use in our analysis. The summary statistics are presented in Table 3 Panel A.

	Mean (1)	SD (2)	Min (3)	Max (4)	N (5)
Panel A: Measures of cognition					
Numeracy index	2.591	0.875	1.000	4.000	3,743
Working memory	10.407	3.146	0.000	20.000	3,743
Verbal fluency	20.986	6.207	0.000	50.000	3,743
Literacy score	0.716	0.451	0.000	1.000	3,743
Accuracy and speed	19.563	5.601	0.000	59.000	3,743
Panel B: Financial Outcomes					
Financial wealth	9.418	3.122	0.000	15.701	3,743
Total wealth	11.618	3.153	-12.176	16.173	3,743
Net total wealth	10.974	5.098	-12.176	16.173	3,743
Whether any debt	0.433	0.496	0.000	1.000	3,743
Whether any ISAs	0.508	0.500	0.000	1.000	3,743
Whether any stocks, ISA shares or trusts	0.477	0.500	0.000	1.000	3,743
Panel C: Channels					
Planner	0.539	0.499	0.000	1.000	3,743
Non-planner	0.189	0.391	0.000	1.000	3,743
Self-control (moderately exercising)	3.335	1.045	1.000	4.000	3,743

Notes: The sample is based on wave 1 of ELSA. The table shows the mean, standard deviation, minimum and maximum value and the number of observations for each variable. Panel A includes the measures of cognition, Panel B refers to the financial outcomes and Panel C shows the channels. The measures of wealth (financial wealth, total wealth and net total wealth) are expressed as the inverse hyperbolic sine transformation, to account for negative values and values of wealth equal to zero. All measures are weighted using the survey weights.

Table 3: Summary statistics

Numeracy. First, we derive a measure of numeracy based on the accuracy of arithmetic calculations. The respondents were asked up to five (out of six) progressively more difficult questions involving arithmetic calculations. Because the respondents were answering different questions based on their performance, we create a numeracy index ranging from 1 (lowest) to 4 (highest) for all individuals in our

[^6]sample, as in Banks and Oldfield (2007). ${ }^{9}$ Table 3 shows that the average of the numeracy index is around 2.6. Although our measure of numeracy is correlated with standard demographic characteristics, such as gender, age, and education, we still observe considerable variation when conditioning on these characteristics (see Figure 2). For example, while a share of respondents who have either the highest or the second highest level of numeracy is increasing in the level of education, we observe a full range of numeracy levels within each education group.

| | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Figure 2: Distribution of Numeracy Index by Demographics
Notes: This figure shows the distribution of numeracy by three characteristics. The top panel distinguishes between men and women, the middle panel shows the distribution by age groups, while the lower panel shows the distribution by education level. The numeracy is defined as $1,2,3$, or 4 , with the lowest level being 1 and the highest being 4 .

Working Memory. Second, we construct a measure of working memory, by summing up the number of words that a respondent is able to recall immediately and after a delay, from a set of 10 random words. This working memory score thus varies from 0 to 20, with an average of 10.4 words in our sample (see Table 3). Equivalent indicators of memory are also considered in Christelis et al. (2010) and Smith et al. (2010), among others.

Verbal Fluency. Third, we derive a measure of verbal fluency from a performance in a word finding exercise. A respondent has 60 seconds to name as many different animals as they possibly can and we

[^7]treat the number of animals recalled as a measure of their verbal fluency, as in Christelis et al. (2010). The maximum observed number of animals named is 50 , while the minimum is 0 . On average, the respondents were able to name around 21 animals in 60 seconds (see Table 3).

Literacy. Fourth, we create a literacy score based on the understanding of a hypothetical medicine label. After reading the label, a respondent is asked four questions testing their level of understanding. Because more than 70% of all respondents answer all four questions correctly, rather than taking a raw number of correct answers, we create a dummy variable equal to 1 if a respondent answered all questions correctly, and 0 otherwise. ${ }^{10}$

Accuracy and Speed. Fifth, we use a visual letter cancellation task to measure the accuracy and speed of mental processing. A respondent's score is simply the sum of the letters correctly crossed-out from a page containing a random collection of letters, densely organised into rows and columns. Table 3 shows that in our sample the average measure of accuracy and speed is 19.6 letters correctly crossed, with a minimum value of 0 and a maximum value of 59 .

In order to see how these measures relate to each other, we look at the pairwise correlations in Table 4. What emerges from this table is that although we are employing a set of established cognitive ability measures that have been used in earlier studies (e.g., Banks and Oldfield, 2007; Christelis et al., 2010), the correlations are positive, but far from perfect. Across our five measures, the correlations vary from 0.11 between literacy and accuracy and speed, to 0.36 between verbal fluency and working memory.

For completeness, note that the ELSA questionnaires contain additional measures of cognitive ability, based on the respondent's orientation in time (identifying the date and the day of the week), backward counting, or object naming. These indicators, however, measure very basic aspects of cognitive ability and contain almost exclusively perfect scores. We therefore exclude these measures from our analysis. In Appendix D, we also use an additional measure of cognitive ability, namely fluid intelligence. Table D1 shows that while this measure is correlated with all the other dimensions of cognitive ability, the correlation is not perfect - the highest correlation coefficient of 0.52 is with numeracy. However, as the

[^8]| | Numeracy
 index | Working
 memory | Literacy
 score | Verbal
 fluency | Accuracy
 and speed |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Numeracy index | 1.000 | | | | |
| Working memory | 0.310 | 1.000 | | | |
| Literacy score | 0.253 | 0.239 | 1.000 | | |
| Verbal fluency | 0.301 | 0.355 | 0.188 | 1.000 | |
| Accuracy and speed | 0.136 | 0.210 | 0.110 | 0.232 | 1.000 |

Notes: The sample is based on 3,743 individuals from wave 1 of ELSA. All measures are weighted using the survey weights.

Table 4: Pairwise Correlations - Measures of Cognition
measure of fluid intelligence is extrapolated from data which are 10 years apart, we do not include it among our main measures of cognitive ability, but we test the robustness of our findings to its inclusion in Appendix D.

3.3 Financial Outcomes and Channels

We utilise finely dis-aggregated measures of financial outcomes contained in ELSA, capturing wealth levels as well as propensity for being in debt, holding any tax-advantaged saving accounts, and holding any risky assets. We also create proxies for our two ultimate-node channels, i.e. planning and selfcontrol. ${ }^{11}$ The financial outcomes that we use are comparable with the existing literature (see Table 1). The summary statistics are presented in Panels B and C of Table 3.

Wealth Levels. We distinguish between three different measures of wealth: (1) financial wealth defined as the gross value of all financial assets, excluding housing and pension wealth; (2) total wealth defined as the sum of financial wealth and net non-financial wealth (i.e., real estate); (3) net total wealth - defined as total wealth minus any outstanding debt. For these measures of wealth, we apply the inverse hyperbolic sine transformation (rather than log) to be able to account for zeros and negative values. Panel B, Table 3 shows that in our sample there is considerable variation in all three measures of wealth.

Wealth Composition. We create three different measures to reflect the composition of wealth. First, we define a binary dummy variable indicating whether an individual has any debt, be it owed on credit card, to individuals, or on loans, but excluding any mortgages. Table 3 shows that in our sample around 43% of individuals have some form of debt. Second, we create a binary dummy variable indicating

[^9]whether an individual has any tax-advantaged saving accounts (i.e., cash, life, or shares ISA). Third, we define a binary dummy variable indicating whether an individual has any risky assets (i.e., stocks, shares, or trusts). Panel B in Table 3 shows that while around 51% of people have a tax-advantaged saving account, 48% have some risky assets.

Planning. ELSA contains explicit measures of the respondent's planning behaviour. Thus, we are able to classify an individual as a "planner" if they reported that they plan their household's consumption and saving over a period longer than the next year. Based on the answer to the same question, we classify an individual as a "non-planner" if they reported planning their household's consumption and saving over the next few weeks or spontaneously. In our sample, 54% of respondents are classified as planners and 19% as non-planners (see Panel C in Table 3).

Self-Control. Conditional on health status and other socio-demographic characteristics, we proxy for self-control based on the propensity to undertake activities that are widely known to yield long-term benefits, albeit at some short-term cost. In particular, we look at how often respondents reported exercising moderately, which we interpret as a flow variable reflecting the respondent's repeated, deliberate effort and thus a suitable proxy for self-control. This measure is categorical, with values ranging from 1 for "hardly ever or never", 2 for "one to three times a month", 3 for "once a week", to 4 for "more than once a week". Panel C in Table 3 shows that on average individuals self-report exercising moderately once a week. ${ }^{12}$

4 Empirical Identification

Although our conceptual framework is presented using a directed graph, we use observational data on standard cognitive tests to proxy for different dimensions of the underlying cognitive ability. Thus, similar to recent strands of the behavioural economics literature we cannot interpret correlations that we might find in the data as evidence of causal relationship between cognitive ability and the outcomes of interest. Nonetheless, the empirical approach we adopt is consistent with a large and long-established literature in psychology examining linear relationships between measures of cognitive ability, implic-

[^10]itly taken as exogenous, and performance on various tasks in order to establish the predictive power of various forms of intelligence (Borghans et al., 2008). To facilitate the interpretation of our results, it is also worth highlighting the evidence showing that these measures of cognitive ability can be interpreted as an endowment that remains stable between early adulthood and the age of 55-60 (Craik and Bialystok, 2006). Even more so, Deary et al. (2013) and Deary (2014) report a correlation of 0.7 between intelligence test scores measured at the ages of 11 and 70 , which provides an argument against reverse causality between financial outcomes and cognitive ability. ${ }^{13}$

In order to determine which dimensions of cognitive ability predict our measures of financial outcomes, after accounting for planning and self-control, we estimate the below equation by Ordinary Least Squares (OLS):

$$
\begin{equation*}
y_{i}=\alpha+\text { Cognition }_{i}^{\prime} \beta+\delta_{1} \text { Planning }_{i}+\delta_{2} \text { Self_control }_{i}+X_{i}^{\prime} \gamma+u_{i} \tag{1}
\end{equation*}
$$

where y_{i} is a financial outcome of interest for individual i. Cognition $_{i}$ is a vector of the measures of cognitive ability, i.e. numeracy, working memory, verbal fluency, accuracy and speed, and literacy. Planning $_{i}$ is a measure of either whether individual i is a planner or whether they are a non-planner, and Self_control ${ }_{i}$ measures the level of self-control for individual $i . X_{i}$ is a vector controlling for demographics, i.e. gender, ethnicity, age, education, health level, marital status, number of children, and social class. u_{i} is the error term.

Our main coefficients of interest are the estimates for the measures of cognitive ability (the β 's) and of the ultimate-node channels (δ_{1} and δ_{2}). Our theoretical framework predicts that once we account for the channels, the predictive power of the measures of cognitive ability diminishes, or even disappears. So, we first estimate equation 1 without accounting for the channels, and then we add the channel measures as additional control variables.

5 Results

In this section, we first present our preliminary results, which look at the predictive power of the different measures of cognitive ability for financial outcomes and for channels. We then proceed to our main results, which analyse the predictive power of the different measures of cognitive ability for financial

[^11]outcomes, once we account for the proposed channels.

5.1 Preliminary Results

Predictors of Financial Outcomes. Table 5 shows results obtained from running an amended version of regression 1 in which we do not control for the ultimate-node channels. Each column refers to a different regression, with the title identifying the outcome variable. Additionally, the even-numbered columns use the survey weights.

Column (1) reveals that among the measures of cognitive ability, numeracy, working memory, accuracy and speed, and literacy are all statistically significant predictors of financial wealth. The biggest predictor is numeracy (a one standard deviation increase in the numeracy index is associated with a 0.12 standard deviation increase in financial wealth), followed by literacy and working memory (around 0.05 and 0.07 standard deviations, respectively). Column (2) shows that the results are robust when we use the survey weights. When focusing on the predictors of total wealth (Columns (3) and (4)) numeracy is still the most important predictor (around 0.12 standard deviations), with only literacy being the other statistically significant predictor, although of a smaller magnitude (0.05-0.06 standard deviations). Columns (5) and (6) show similar results for net total wealth - the only predictors that are statistically significant are numeracy and literacy, with the former having a larger coefficient. Overall, these finding are in line with the established literature arguing that numeracy is the strongest predictor of wealth levels and stock holding (see, e.g., Banks and Oldfield, 2007; Smith et al., 2010; Estrada-Mejia et al., 2016).

	Financial wealth (1)	Financial wealth (2)	Total wealth (3)	Total wealth (4)	Net total wealth (5)	Net total wealth (6)	Debt (7)	Debt (8)	ISAs (9)	ISAs (10)	Risky assests (11)	Risky assests (12)
Numeracy index (calculations)	$\begin{gathered} 0.410 * * * \\ (0.059) \\ {[0.115]} \end{gathered}$	$\begin{gathered} 0.421 * * * \\ (0.059) \\ {[0.118]} \end{gathered}$	$0.435^{* * *}$ (0.061) [0.121]	$\begin{gathered} 0.446 * * * \\ (0.061) \\ {[0.124]} \end{gathered}$	$\begin{gathered} 0.645 * * * \\ (0.103) \\ {[0.111]} \end{gathered}$	$\begin{gathered} 0.677 * * * \\ (0.104) \\ {[0.115]} \end{gathered}$	$\begin{gathered} -0.002 \\ (0.011) \\ {[-0.004]} \end{gathered}$	$\begin{gathered} -0.000 \\ (0.011) \\ {[-0.001]} \end{gathered}$	$\begin{gathered} 0.050 * * * \\ (0.010) \\ {[0.088]} \end{gathered}$	$\begin{gathered} 0.051 * * * \\ (0.010) \\ {[0.090]} \end{gathered}$	$\begin{gathered} 0.053 * * * \\ (0.010) \\ {[0.093]} \end{gathered}$	$\begin{gathered} 0.054 * * * \\ (0.010) \\ {[0.095]} \end{gathered}$
Working memory (word recall)	$\begin{gathered} 0.066 * * * \\ (0.016) \\ {[0.066]} \end{gathered}$	$\begin{gathered} 0.067 * * * \\ (0.016) \\ {[0.067]} \end{gathered}$	$\begin{gathered} 0.029 \\ (0.017) \\ {[0.028]} \end{gathered}$	$\begin{gathered} 0.029 \\ (0.017) \\ {[0.029]} \end{gathered}$	$\begin{gathered} 0.044 \\ (0.028) \\ {[0.027]} \end{gathered}$	0.048 (0.028) [0.029]	-0.002 (0.003) $[-0.010]$		$\begin{gathered} 0.011 * * * \\ (0.003) \\ {[0.067]} \end{gathered}$	$\begin{gathered} 0.010 * * * \\ (0.003) \\ {[0.066]} \end{gathered}$		
Verbal fluency (word finding)	$\begin{gathered} 0.011 \\ (0.008) \\ {[0.022]} \end{gathered}$	$\begin{gathered} 0.006 \\ (0.008) \\ {[0.013]} \end{gathered}$	$\begin{aligned} & 0.016^{*} \\ & (0.008) \\ & {[0.032]} \end{aligned}$	$\begin{gathered} 0.010 \\ (0.008) \\ {[0.020]} \end{gathered}$	0.008 (0.014) [0.009]	$\begin{gathered} -0.005 \\ (0.014) \\ {[-0.006]} \end{gathered}$	0.000 (0.001) [0.002]	$\begin{gathered} 0.001 \\ (0.001) \\ {[0.007]} \end{gathered}$	$\begin{gathered} 0.001 \\ (0.001) \\ {[0.015]} \end{gathered}$	$\begin{gathered} 0.000 \\ (0.001) \\ {[0.006]} \end{gathered}$	$\begin{gathered} 0.000 \\ (0.001) \\ {[0.002]} \end{gathered}$	$\begin{aligned} & -0.000 \\ & (0.001) \\ & {[-0.004]} \end{aligned}$
Accuracy and speed	$\begin{aligned} & 0.019^{*} \\ & (0.008) \\ & {[0.034]} \end{aligned}$	$\begin{aligned} & 0.020^{*} \\ & (0.008) \\ & {[0.035]} \end{aligned}$	$\begin{gathered} 0.014 \\ (0.009) \\ {[0.024]} \end{gathered}$	$\begin{gathered} 0.013 \\ (0.009) \\ {[0.024]} \end{gathered}$	$\begin{aligned} & -0.002 \\ & (0.015) \\ & {[-0.002]} \end{aligned}$	$\begin{gathered} -0.005 \\ (0.015) \\ {[-0.006]} \end{gathered}$	0.002 (0.001) [0.028]	$\begin{gathered} 0.003 \\ (0.002) \\ {[0.032]} \end{gathered}$	$\begin{gathered} 0.002 \\ (0.001) \\ {[0.023]} \end{gathered}$	$\begin{gathered} 0.002 \\ (0.001) \\ {[0.023]} \end{gathered}$	$\begin{gathered} 0.000 \\ (0.001) \\ {[0.005]} \end{gathered}$	$\begin{gathered} 0.001 \\ (0.001) \\ {[0.007]} \end{gathered}$
Literacy score	$\begin{gathered} 0.365 * * * \\ (0.104) \\ {[0.053]} \end{gathered}$	$\begin{gathered} 0.348 * * * \\ (0.104) \\ {[0.050]} \end{gathered}$	$\begin{gathered} 0.386^{* * *} \\ (0.106) \\ {[0.055]} \end{gathered}$	$\begin{gathered} 0.373 * * * \\ (0.107) \\ {[0.053]} \end{gathered}$	$\begin{gathered} 0.546^{* *} \\ (0.180) \\ {[0.048]} \end{gathered}$		0.016 (0.018) [0.014]		0.019 (0.018) [0.017]	0.016 (0.018) [0.014]		
Observations R-squared	$\begin{aligned} & 3,743 \\ & 0.262 \end{aligned}$	$\begin{aligned} & 3,743 \\ & 0.260 \end{aligned}$	$\begin{aligned} & 3,743 \\ & 0.240 \end{aligned}$	$\begin{aligned} & 3,743 \\ & 0.241 \end{aligned}$	$\begin{aligned} & 3,743 \\ & 0.169 \end{aligned}$	$\begin{aligned} & 3,743 \\ & 0.169 \end{aligned}$	$\begin{aligned} & 3,743 \\ & 0.073 \end{aligned}$	$\begin{aligned} & 3,743 \\ & 0.073 \end{aligned}$	$\begin{aligned} & 3,743 \\ & 0.107 \end{aligned}$	$\begin{aligned} & 3,743 \\ & 0.105 \end{aligned}$	$\begin{aligned} & 3,743 \\ & 0.155 \end{aligned}$	$\begin{aligned} & 3,743 \\ & 0.152 \end{aligned}$

The sample is based on wave 1 of ELSA, including only individuals aged 50 to 70 years old. The outcomes for each regression are reported in the title of each column, where all measures are expressed as the inverse hyperbolic sine transformation. The regressions in columns (2), (4), (6), (8), (10) and (12) use the survey weights. All regressions control for a female dummy, a white dummy, age group dummies, health status dummies, social class dummies, marital status dummies and whether the respond has any children. Standard errors in round brackets and standardised coefficients in square brackets. *** $\mathrm{p}<0.001, * * \mathrm{p}<0.01, * \mathrm{p}<0.5$.

Table 5: Predictors of Financial Outcomes

In Columns (7) to (12), we consider the relationship between different dimensions of cognitive ability and our measures of wealth composition. What emerges very clearly from Table 5 is that none of the measures of cognitive ability is statistically significant when the outcome is whether or not an individual has any debt. For measures of holding any tax-advantaged saving accounts and holding any risky assets, again only some measures of cognitive ability are statistically significant predictors. In particular, an increase of one standard deviation in the numeracy score is associated with an increase of around 0.09 standard deviations in the probability to have any ISA holdings (Columns (9) and (10)) or any stocks, shares or trusts holdings (Columns (11) and (12)). The predictive power of working memory is smaller, at around 0.05-0.07 standard deviations. For literacy, the estimate is only statistically significant when focusing on holding any risky assets, at around 0.05 standard deviations.

	Planner (1)	Planner (2)	Non-planner (3)	Non-planner (4)	Self-control (5)	Self-control (6)
Numeracy index (calculations)	0.023^{*}	0.024^{*}	-0.020^{*}	-0.021^{*}	0.027	0.030
	(0.010)	(0.010)	(0.008)	(0.008)	(0.021)	(0.021)
	$[0.040]$	$[0.042]$	$[-0.044]$	$[-0.046]$	$[0.023]$	$[0.025]$
Working memory (word recall)	0.007^{*}	0.006^{*}	$-0.008^{* * *}$	$-0.008^{* * *}$	0.013^{*}	0.011^{*}
	(0.003)	(0.003)	(0.002)	(0.002)	(0.006)	(0.006)
	$[0.045]$	$[0.040]$	$[-0.065]$	$[-0.062]$	$[0.038]$	$[0.035]$
Verbal fluency (word finding)	0.001	0.001	-0.001	-0.001	$0.013^{* * *}$	$0.012^{* * *}$
	(0.001)	(0.001)	(0.001)	(0.001)	(0.003)	(0.003)
	$[0.016]$	$[0.014]$	$[-0.015]$	$[-0.015]$	$[0.075]$	$[0.075]$
Accuracy and speed	0.000	0.000	-0.000	-0.000	0.004	0.003
	(0.001)	(0.001)	(0.001)	(0.001)	(0.003)	(0.003)
	$[0.002]$	$[0.000]$	$[-0.005]$	$[-0.004]$	$[0.021]$	$[0.016]$
Literacy score	$0.050 * *$	0.045^{*}	$-0.055^{* * *}$	$-0.051^{* * *}$	0.001	0.008
	(0.018)	(0.018)	(0.014)	(0.014)	(0.037)	(0.037)
	$[0.045]$	$[0.041]$	$[-0.063]$	$[-0.058]$	$[0.001]$	$[0.003]$
Observations						
R-squared	3,743	3,743	3,743	3,743	3,743	3,743

The sample is based on wave 1 of ELSA, including only individuals aged 50 to 70 years old. The outcomes for each regression are reported in the title of each column. The measure of self-control is based on moderately exercising. Regressions in columns (2), (4) and (6) use the survey weights. All regressions control for a female dummy, a white dummy, age group dummies, health status dummies, social class dummies, marital status dummies and whether the respond has any children. Standard errors in round brackets and standardised coefficients in square brackets. ${ }^{* * *} \mathrm{p}<0.001,{ }^{*} * \mathrm{p}<0.01, * \mathrm{p}<0.05$.

Table 6: Predictors of the Channels

Predictors of Channels. Following the conceptual framework, we also investigate how strongly the measures of cognitive ability predict the ultimate-node channels. Table 6 has a similar structure to Table 5 - each column refers to a different outcome, identified in the name of the column, and evennumbered columns use survey weights. Columns (1) and (2) show that for planning, numeracy, working memory and literacy are the only statistically significant predictors, with comparable predictive power (a one standard deviation increase associated with approximately a 0.04 standard deviation increase in the
probability of being a planner). These findings are supported by the results in columns (3) and (4), where we show the results for the probability of being a non-planner. Columns (5) and (6) show that when analysing the proxy for self-control based on moderate exercise, working memory and verbal fluency are the only statistically significant predictors, with the latter having the largest magnitude (around 0.08 standard deviations). Overall, these results indicate that certain dimensions of cognitive ability are indeed correlated with the ultimate-node channels that we propose, preempting our hypothesis that these can account for at least part of the relationship between cognitive ability and financial outcomes.

5.2 Main Results

We next discuss our main results, which focus on the predictors of the financial measures, when accounting for the proposed channels. Tables 7 to 12 report the results for each of the financial outcomes, with even-numbered columns using survey weights.

Wealth Levels. Table 7 focuses on financial wealth. Across all specifications, we see that both channels (planning and self-control) are statistically significant predictors of financial wealth, but controlling for them does not reduce the predictive power of numeracy, working memory, accuracy and speed, or literacy. In fact, the associated coefficients are only slightly smaller when we account for the channels (see Columns (7) to (10)), compared to the ones reported in Table 5 (see Columns (1) and (2)), and the differences are not statistically significant. In terms of magnitudes, planning is the largest predictor (around 0.23-0.24 standard deviations), followed by numeracy and self-control (each with around 0.10-0.11 standard deviations).

Table 8 shows the predictors for total wealth. What is clear across all columns is that planning, whether it is measured as being a planner or a non-planner, predicts total wealth, on top of self-control as well as numeracy and literacy (which were the only measures of cognitive ability statistically significant in Table 5 in Columns (3) and (4)). The predictive power of planning is about $60-100 \%$ higher than the one of self-control or numeracy, each with an estimate of around 0.11 standard deviations (Columns (7) to (10)). When comparing Columns (3) and (4) in Table 5 and Table 8, we can again see that there is only a small reduction in the coefficients for numeracy and literacy, once we account for the ultimate-node channels, with the difference in estimates not being statistically significant.

Finally, when looking at net total wealth, Table 9 shows that planning, self-control, numeracy and literacy are again the only statistically significant predictors, with planning having the greatest predictive power (around 0.17-0.18 standard deviations), followed by numeracy (around 0.10-0.11 standard
deviations), self-control (around 0.07-0.09 standard deviations), and literacy (around 0.04-0.05 standard deviations). Similarly to the previous two measures of wealth levels, accounting for the ultimate-node channels does not seem to reduce the predictive power of the key cognitive ability measures, as the differences in estimates are not statistically significant (Columns (5) and (6) in in Table 5 vs Table 9).

To sum up, we find that even after controlling for planning and self-control, numeracy and literacy are still important predictors for all three measures of wealth. All results are robust to the use of survey weights. ${ }^{14}$

[^12]| | Financial wealth
 (1) | Financial wealth
 (2) | Financial wealth
 (3) | Financial wealth
 (4) | Financial wealth (5) | Financial wealth (6) | Financial wealth (7) | Financial wealth (8) | Financial wealth
 (9) | Financial wealth (10) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Numeracy index (calculations) | $0.377 * * *$
 (0.058)
 [0.106] | $\begin{gathered} 0.388 * * * \\ (0.057) \\ {[0.109]} \end{gathered}$ | $\begin{gathered} 0.371 * * * \\ (0.057) \\ {[0.104]} \end{gathered}$ | $\begin{gathered} 0.382 * * * \\ (0.057) \\ {[0.107]} \end{gathered}$ | $0.400^{* * *}$
 (0.059)
 [0.112] | $0.411^{* * *}$
 (0.059)
 [0.115] | $0.369^{* * *}$
 (0.057)
 [0.103] | $\begin{gathered} 0.379 * * * \\ (0.057) \\ {[0.107]} \end{gathered}$ | $0.364 * * *$ (0.057)
 [0.102] | $0.374 * * *$ (0.057)
 [0.105] |
| Working memory (word recall) | 0.055*** (0.016) [0.056] | 0.058*** (0.016)
 [0.058] | $\begin{gathered} 0.050^{* *} \\ (0.016) \\ {[0.050]} \end{gathered}$ | $\begin{gathered} 0.052 * * * \\ (0.016) \\ {[0.052]} \end{gathered}$ | $\begin{gathered} 0.061 * * * \\ (0.016) \\ {[0.062]} \end{gathered}$ | 0.063*** (0.016) [0.063] | 0.052***
 (0.016)
 [0.052] | $\begin{gathered} 0.054 * * * \\ (0.016) \\ {[0.055]} \end{gathered}$ | | |
| Verbal fluency (word finding) | $\begin{gathered} 0.009 \\ (0.008) \\ {[0.019]} \end{gathered}$ | $\begin{gathered} 0.005 \\ (0.008) \\ {[0.009]} \end{gathered}$ | $\begin{gathered} 0.009 \\ (0.008) \\ {[0.019]} \end{gathered}$ | 0.004
 (0.008)
 [0.009] | $\begin{gathered} 0.007 \\ (0.008) \\ {[0.013]} \end{gathered}$ | $\begin{gathered} 0.002 \\ (0.008) \\ {[0.004]} \end{gathered}$ | $\begin{gathered} 0.005 \\ (0.008) \\ {[0.011]} \end{gathered}$ | $\begin{gathered} 0.001 \\ (0.008) \\ {[0.002]} \end{gathered}$ | $\begin{gathered} 0.006 \\ (0.008) \\ {[0.011]} \end{gathered}$ | $\begin{gathered} 0.001 \\ (0.008) \\ {[0.002]} \end{gathered}$ |
| Accuracy and speed | $\begin{aligned} & 0.019^{*} \\ & (0.008) \\ & {[0.034]} \end{aligned}$ | $\begin{aligned} & 0.019^{*} \\ & (0.008) \\ & {[0.035]} \end{aligned}$ | $\begin{aligned} & 0.018^{*} \\ & (0.008) \\ & {[0.033]} \end{aligned}$ | $\begin{aligned} & 0.019^{*} \\ & (0.008) \\ & {[0.034]} \end{aligned}$ | 0.018*
 (0.008)
 [0.032] | 0.018*
 (0.008)
 [0.033] | $\begin{aligned} & 0.017 * \\ & (0.008) \\ & {[0.031]} \end{aligned}$ | $\begin{aligned} & 0.019^{*} \\ & (0.008) \\ & {[0.033]} \end{aligned}$ | 0.017*
 (0.008)
 [0.031] | $\begin{aligned} & 0.018^{*} \\ & (0.008) \\ & {[0.032]} \end{aligned}$ |
| Literacy score | $\begin{gathered} 0.294 * * \\ (0.101) \\ {[0.042]} \end{gathered}$ | $\begin{gathered} 0.284^{* *} \\ (0.101) \\ {[0.041]} \end{gathered}$ | $\begin{aligned} & 0.257 * \\ & (0.100) \\ & {[0.037]} \end{aligned}$ | $\begin{aligned} & 0.251^{*} \\ & (0.100) \\ & {[0.036]} \end{aligned}$ | $\begin{gathered} 0.364 * * * \\ (0.103) \\ {[0.053]} \end{gathered}$ | $\begin{gathered} 0.346 * * * \\ (0.103) \\ {[0.050]} \end{gathered}$ | $\begin{gathered} 0.295^{* *} \\ (0.100) \\ {[0.043]} \end{gathered}$ | $\begin{gathered} 0.284 * * \\ (0.100) \\ {[0.041]} \end{gathered}$ | $\begin{gathered} 0.259 * * \\ (0.099) \\ {[0.037]} \end{gathered}$ | $\begin{aligned} & 0.251^{*} \\ & (0.100) \\ & {[0.036]} \end{aligned}$ |
| Planner | $1.431 * * *$
 (0.090)
 [0.229] | 1.428***
 (0.090)
 [0.228] | | | | | $\begin{gathered} 1.397 * * * \\ (0.090) \\ {[0.223]} \end{gathered}$ | $\begin{gathered} 1.392 * * * \\ (0.090) \\ {[0.222]} \end{gathered}$ | | |
| Non-planner | | | $\begin{gathered} -1.963 * * * \\ (0.114) \\ {[-0.246]} \end{gathered}$ | $\begin{gathered} -1.923 * * * \\ (0.115) \\ {[-0.241]} \end{gathered}$ | | | | | $\begin{gathered} -1.911 * * * \\ (0.114) \\ {[-0.239]} \end{gathered}$ | $\begin{gathered} -1.869 * * * \\ (0.114) \\ {[-0.234]} \end{gathered}$ |
| Self-control (moderately exercising) | | | | | $\begin{gathered} 0.355 * * * \\ (0.045) \\ {[0.119]} \end{gathered}$ | $\begin{gathered} 0.347 * * * \\ (0.046) \\ {[0.115]} \end{gathered}$ | $\begin{gathered} 0.319 * * * \\ (0.044) \\ {[0.107]} \end{gathered}$ | $\begin{gathered} 0.307 * * * \\ (0.044) \\ {[0.102]} \end{gathered}$ | $\begin{gathered} 0.307 * * * \\ (0.044) \\ {[0.103]} \end{gathered}$ | $\begin{gathered} 0.296 * * * \\ (0.044) \\ {[0.098]} \end{gathered}$ |
| Observations | 3,743 | 3,743 | 3,743 | 3,743 | 3,743 | 3,743 | 3,743 | 3,743 | 3,743 | 3,743 |
| R -squared | 0.309 | 0.307 | 0.316 | 0.312 | 0.274 | 0.271 | 0.318 | 0.316 | 0.325 | 0.320 |

 respond has any children. Standard errors in round brackets and standardised coefficients in square brackets. $* * * \mathrm{p}<0.001, * * \mathrm{p}<0.01, * \mathrm{p}<0.05$.

Table 7: Predictors of Financial Wealth

	Total wealth (1)	Total wealth (2)	Total wealth (3)	Total wealth (4)	Total wealth (5)	Total wealth (6)	Total wealth (7)	Total wealth (8)	Total wealth (9)	Total wealth (10)
Numeracy index (calculations)	$\begin{gathered} 0.411^{* * *} \\ (0.060) \\ {[0.114]} \end{gathered}$	$\begin{gathered} 0.421 * * * \\ (0.060) \\ {[0.117]} \end{gathered}$	$\begin{gathered} 0.402 * * * \\ (0.059) \\ {[0.112]} \end{gathered}$	$\begin{gathered} 0.412 * * * \\ (0.059) \\ {[0.114]} \end{gathered}$	$\begin{gathered} 0.426 * * * \\ (0.061) \\ {[0.118]} \end{gathered}$	$\begin{gathered} 0.437 * * * \\ (0.061) \\ {[0.121]} \end{gathered}$	$\begin{gathered} 0.403 * * * \\ (0.060) \\ {[0.112]} \end{gathered}$	$\begin{gathered} 0.414 * * * \\ (0.060) \\ {[0.115]} \end{gathered}$	$\begin{gathered} 0.396^{* * *} \\ (0.059) \\ {[0.110]} \end{gathered}$	$\begin{gathered} 0.406^{* * *} \\ (0.059) \\ {[0.112]} \end{gathered}$
Working memory (word recall)				0.016 (0.016) [0.016]	$\begin{gathered} 0.025 \\ (0.016) \\ {[0.024]} \end{gathered}$		$\begin{gathered} 0.017 \\ (0.016) \\ {[0.017]} \end{gathered}$			
Verbal fluency (word finding)	0.015 (0.008) [0.029]	$\begin{gathered} 0.009 \\ (0.008) \\ {[0.018]} \end{gathered}$	0.015 (0.008) [0.029]		0.012 (0.008) [0.024]	0.006 (0.008) [0.012]	0.011 (0.008) [0.022]	0.006 (0.008) [0.011]	0.011 (0.008) [0.022]	0.005 (0.008) [0.011]
Accuracy and speed	0.013 (0.008) [0.024]	0.013 (0.009) [0.024]	0.013 (0.008) [0.023]	0.013 (0.008) [0.023]	0.012 (0.009) [0.022]	$\begin{gathered} 0.012 \\ (0.009) \\ {[0.022]} \end{gathered}$		0.013 (0.009) [0.022]	0.012 (0.008) [0.021]	0.012 (0.008) [0.022]
Literacy score	$\begin{gathered} 0.332^{* *} \\ (0.105) \\ {[0.048]} \end{gathered}$	$\begin{gathered} 0.325 * * \\ (0.105) \\ {[0.046]} \end{gathered}$	$\begin{gathered} 0.294 * * \\ (0.104) \\ {[0.042]} \end{gathered}$	$\begin{gathered} 0.289 * * \\ (0.104) \\ {[0.041]} \end{gathered}$	$\begin{gathered} 0.385^{* * *} \\ (0.106) \\ {[0.055]} \end{gathered}$	$\begin{gathered} 0.370^{* * *} \\ (0.106) \\ {[0.053]} \end{gathered}$	$\begin{gathered} 0.334^{* *} \\ (0.104) \\ {[0.048]} \end{gathered}$	$\begin{gathered} 0.324^{* *} \\ (0.105) \\ {[0.046]} \end{gathered}$	$\begin{gathered} 0.296^{*} * \\ (0.103) \\ {[0.042]} \end{gathered}$	$\begin{gathered} 0.290^{* *} \\ (0.104) \\ {[0.041]} \end{gathered}$
Planner	$\begin{gathered} 1.066^{* * *} \\ (0.094) \\ {[0.169]} \end{gathered}$	$\begin{gathered} 1.075 * * * \\ (0.094) \\ {[0.169]} \end{gathered}$					$\begin{gathered} 1.035 * * * \\ (0.093) \\ {[0.164]} \end{gathered}$	$\begin{gathered} 1.043 * * * \\ (0.094) \\ {[0.164]} \end{gathered}$		
Non-planner			$\begin{gathered} -1.672^{* * *} \\ (0.118) \\ {[-0.207]} \end{gathered}$	$\begin{gathered} -1.642^{* * *} \\ (0.119) \\ {[-0.203]} \end{gathered}$					$\begin{gathered} -1.625 * * * \\ (0.118) \\ {[-0.202]} \end{gathered}$	$\begin{gathered} -1.595^{* * *} \\ (0.119) \\ {[-0.197]} \end{gathered}$
Self-control (moderately exercising)					$\begin{gathered} 0.317 * * * \\ (0.046) \\ {[0.105]} \end{gathered}$	$\begin{gathered} 0.303 * * * \\ (0.047) \\ {[0.099]} \end{gathered}$	$\begin{gathered} 0.290 * * * \\ (0.046) \\ {[0.096]} \end{gathered}$	$\begin{gathered} 0.273 * * * \\ (0.046) \\ {[0.090]} \end{gathered}$	$\begin{gathered} 0.276 * * * \\ (0.045) \\ {[0.092]} \end{gathered}$	$\begin{gathered} 0.260 * * * \\ (0.046) \\ {[0.085]} \end{gathered}$
Observations	3,743	3,743	3,743	3,743	3,743	3,743	3,743	3,743	3,743	3,743
R -squared	0.266	0.267	0.279	0.278	0.249	0.250	0.273	0.274	0.286	0.285

The sample is based on wave 1 of ELSA, including only individuals aged 50 to 70 years old. Each column shows results from a different regression, with the outcome being total wealth, expressed as the inverse hyperbolic sine transformation. The regressions in columns (2), (4), (6), (8) and (10) use the survey weights. All regressions control for a female dummy, a white dummy, age group dummies, health status dummies, social class dummies, marital status dummies and whether the respond has any children. Standard errors in round brackets and standardised coefficients in square brackets. *** $\mathrm{p}<0.001,{ }^{* *} \mathrm{p}<0.01, * \mathrm{p}<0.05$.

Table 8: Predictors of Total Wealth

	Net total wealth (1)	Net total wealth (2)	Net total wealth (3)	Net total wealth (4)	Net total wealth (5)	Net total wealth (6)	Net total wealth (7)	Net total wealth (8)	Net total wealth (9)	Net total wealth (10)
Numeracy index (calculations)	0.605***	0.635***	0.597***	0.628***	0.632***	0.665***	0.595***	0.625***	0.587***	0.619***
	(0.101)	(0.103)	(0.101)	(0.102)	(0.102)	(0.104)	(0.101)	(0.102)	(0.101)	(0.102)
	[0.104]	[0.108]	[0.102]	[0.106]	[0.108]	[0.113]	[0.102]	[0.106]	[0.101]	[0.105]
Working memory (word recall)	0.031	0.037	0.024	0.030	0.038	0.043	0.027	0.033	0.020	0.026
	(0.028)	(0.028)	(0.028)	(0.028)	(0.028)	(0.028)	(0.028)	(0.028)	(0.027)	(0.028)
	[0.019]	[0.022]	[0.015]	[0.018]	[0.024]	[0.026]	[0.016]	[0.020]	[0.012]	[0.016]
Verbal fluency (word finding)	0.005	-0.007	0.005	-0.007	0.002	-0.010	0.000	-0.011	0.001	-0.011
	(0.014)	(0.014)	(0.014)	(0.014)	(0.014)	(0.014)	(0.014)	(0.014)	(0.014)	(0.014)
	[0.007]	[-0.008]	[0.007]	[-0.008]	[0.002]	[-0.012]	[0.000]	[-0.013]	[0.001]	[-0.014]
Accuracy and speed	-0.002	-0.005	-0.003	-0.006	-0.004	-0.007	-0.004	-0.007	-0.004	-0.007
	(0.014)	(0.015)	(0.014)	(0.015)	(0.015)	(0.015)	(0.014)	(0.015)	(0.014)	(0.015)
	[-0.003]	[-0.006]	[-0.003]	[-0.006]	[-0.004]	[-0.007]	[-0.004]	[-0.007]	[-0.005]	[-0.008]
Literacy score	0.459**	0.482**	0.412*	0.442*	0.545**	0.559**	0.461**	0.481**	0.415*	0.442*
	(0.177)	(0.180)	(0.177)	(0.180)	(0.179)	(0.182)	(0.176)	(0.179)	(0.176)	(0.179)
	[0.041]	[0.042]	[0.036]	[0.038]	[0.048]	[0.049]	[0.041]	[0.042]	[0.037]	[0.039]
Planner	1.742***	1.792***					1.698***	1.748***		
	(0.159)	(0.161)					(0.158)	(0.161)		
	[0.170]	[0.173]					[0.166]	[0.168]		
Non-planner			-2.435***	-2.384***					-2.368***	-2.319***
			(0.202)	(0.205)					(0.201)	(0.205)
			[-0.187]	[-0.180]					[-0.182]	[-0.175]
Self-control (moderately exercising)					0.455***	0.421***	0.411***	0.370***	0.396***	0.357***
					(0.079)	(0.080)	(0.078)	(0.079)	(0.077)	(0.079)
					[0.093]	[0.084]	[0.084]	[0.074]	[0.081]	[0.072]
Observations	3,743	3,743	3,743	3,743	3,743	3,743	3,743	3,743	3,743	3,743
R -squared	0.195	0.196	0.201	0.198	0.177	0.175	0.201	0.200	0.206	0.202

 dummies and whether the respond has any children. Standard errors in round brackets and standardised coefficients in square brackets. *** $\mathrm{p}<0.001, * * \mathrm{p}<0.01$, * $\mathrm{p}<0.05$.

Table 9: Predictors of Net Total Wealth

Wealth Composition. Table 10 reports the predictors of having any debt. The only predictor that is statistically significant across all specifications is planning, when measured as whether an individual is a planner (Columns (1), (2), (7) and (8)). None of the measures of cognitive ability has a statistically significant coefficient estimate, similarly to the results reported in Columns (7) and (8) of Table 5. This could well reflect the fact that borrowing cannot be universally classified as 'good' or 'bad', even though we exclude mortgages from our measure of indebtedness. For example, borrowing in order to smooth consumption could be a rational response to a negative income shock.

Tables 11 and 12 show that planning, self-control, numeracy and working memory are statistically significant predictors of both having any tax-advantaged saving accounts and holding any risky assets. For the latter outcome, literacy also has a statistically significant coefficient estimate (Table 12). In terms of magnitudes, planning is the strongest predictor (with a standardised coefficient of around 0.13-0.17 standard deviations), followed by numeracy and self-control (around 0.05-0.10 standard deviations). Analogously to the results corresponding to wealth levels, accounting for the ultimate-node channels has little impact on the predictive power of cognitive ability measures, with no statistically significant differences in estimates.

In Appendix D, Tables D2 to D4, we repeat our analysis using an additional measure of cognitive ability, namely fluid intelligence. As we are able to create this variable for only two thirds of our main sample, we first check robustness of the main results for this smaller sample. While the difference between Tables D2 and D3 is the measure of planning, Table D4 uses survey weights. What emerges from these tables, is that independently of the measure of planning used, restricting the sample does not seem to alter the fact that planning, self-control and numeracy still are the main predictors of all our financial measures, except indebtedness. When including the fluid intelligence, its predictive power depends on the outcome variable. Fluid intelligence is a good predictor for financial wealth, having tax-advantaged saving accounts and holding any risky assets, independently of whether we use the planner or nonplanner variables (Columns (2), (10) and (12) in Tables D2 and D3), with a magnitude of around 0.06 0.08 standard deviations. ${ }^{15}$

[^13]| | Debt (1) | Debt (2) | Debt (3) | Debt (4) | Debt (5) | Debt
 (6) | Debt
 (7) | Debt (8) | Debt
 (9) | Debt (10) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Numeracy index (calculations) | $\begin{aligned} & -0.001 \\ & (0.011) \end{aligned}$ | $\begin{gathered} 0.001 \\ (0.011) \\ {[0.002]} \end{gathered}$ | $\begin{gathered} -0.002 \\ (0.011) \\ \Gamma-0.0031 \end{gathered}$ | $\begin{gathered} -0.000 \\ (0.011) \end{gathered}$ | $\begin{gathered} -0.002 \\ (0.011) \end{gathered}$ | $\begin{gathered} -0.000 \\ (0.011) \\ \Gamma-0.0001 \end{gathered}$ | $\begin{gathered} -0.001 \\ (0.011) \end{gathered}$ $[-0.001]$ | $\begin{gathered} 0.001 \\ (0.011) \\ {[0.002]} \end{gathered}$ | $\begin{gathered} -0.002 \\ (0.011) \end{gathered}$ | $\begin{gathered} -0.000 \\ (0.011) \\ {[-0.001]} \end{gathered}$ |
| Working memory (word recall) | -0.001
 (0.003)
 [-0.007] | -0.002
 (0.003)
 [-0.012] | -0.001
 (0.003)
 [-0.010] | -0.002 (0.003)
 [-0.014] | -0.001
 (0.003)
 [-0.009] | | -0.001
 (0.003)
 [-0.007] | $\begin{gathered} -0.002 \\ (0.003) \\ {[-0.012]} \end{gathered}$ | -0.001
 (0.003)
 [-0.009] | |
| Verbal fluency (word finding) | | 0.001
 (0.001)
 [0.008] | $\begin{gathered} 0.000 \\ (0.001) \\ {[0.002]} \end{gathered}$ | 0.001
 (0.001)
 [0.007] | | 0.001
 (0.001)
 [0.007] | $\begin{gathered} 0.000 \\ (0.001) \\ {[0.003]} \end{gathered}$ | | 0.000
 (0.001)
 [0.002] | $\begin{gathered} 0.001 \\ (0.001) \\ {[0.007]} \end{gathered}$ |
| Accuracy and speed | $\begin{gathered} 0.002 \\ (0.001) \\ {[0.028]} \end{gathered}$ | $\begin{gathered} 0.003 \\ (0.002) \\ {[0.032]} \end{gathered}$ | $\begin{gathered} 0.002 \\ (0.001) \\ {[0.028]} \end{gathered}$ | $\begin{gathered} 0.003 \\ (0.002) \\ {[0.032]} \end{gathered}$ | $\begin{gathered} 0.003 \\ (0.001) \\ {[0.028]} \end{gathered}$ | $\begin{gathered} 0.003 \\ (0.002) \\ {[0.032]} \end{gathered}$ | $\begin{gathered} 0.003 \\ (0.001) \\ {[0.028]} \end{gathered}$ | $\begin{gathered} 0.003 \\ (0.002) \\ {[0.032]} \end{gathered}$ | $\begin{gathered} 0.003 \\ (0.001) \\ {[0.028]} \end{gathered}$ | $\begin{gathered} 0.003 \\ (0.002) \\ {[0.032]} \end{gathered}$ |
| Literacy score | $\begin{gathered} 0.019 \\ (0.018) \\ {[0.017]} \end{gathered}$ | | 0.016
 (0.018)
 [0.014] | | | 0.015
 (0.018)
 [0.014] | | $\begin{gathered} 0.018 \\ (0.018) \\ {[0.016]} \end{gathered}$ | | |
| Planner | $\begin{gathered} -0.059 * * * \\ (0.017) \\ {[-0.059]} \end{gathered}$ | $\begin{gathered} -0.058 * * * \\ (0.017) \\ {[-0.059]} \end{gathered}$ | | | | | $\begin{gathered} -0.059 * * * \\ (0.017) \\ {[-0.059]} \end{gathered}$ | $\begin{gathered} -0.058 * * * \\ (0.017) \\ {[-0.059]} \end{gathered}$ | | |
| Non-planner | | | $\begin{gathered} 0.002 \\ (0.021) \\ {[0.002]} \end{gathered}$ | $\begin{gathered} -0.002 \\ (0.021) \\ {[-0.002]} \end{gathered}$ | | | | | $\begin{gathered} 0.001 \\ (0.021) \\ {[0.001]} \end{gathered}$ | $\begin{gathered} -0.003 \\ (0.021) \\ {[-0.002]} \end{gathered}$ |
| Self-control (moderately exercising) | | | | | $\begin{gathered} -0.004 \\ (0.008) \\ {[-0.009]} \end{gathered}$ | | $\begin{gathered} -0.003 \\ (0.008) \\ {[-0.006]} \end{gathered}$ | -0.001
 (0.008)
 [-0.002] | | $\begin{gathered} -0.003 \\ (0.008) \\ {[-0.006]} \end{gathered}$ |
| Observations | 3,743 | 3,743 | 3,743 | 3,743 | 3,743 | 3,743 | 3,743 | 3,743 | 3,743 | 3,743 |
| R -squared | 0.076 | 0.076 | 0.073 | 0.073 | 0.073 | 0.073 | 0.076 | 0.076 | 0.073 | 0.073 |

The sample is based on wave 1 of ELSA, including only individuals aged 50 to 70 years old. Each column shows results from a different regression, with the outcome being a dummy variable equal to 1 if an individual had any debt and zero otherwise. The regressions in columns (2), (4), (6), (8) and (10) use the survey weights. All regressions control for a female dummy, a white dummy, age group dummies, health status dummies, social class dummies, marital status dummies and whether the respond has any children. Standard errors in round brackets and standardised coefficients in square brackets. $* * * p<0.001, * * p<0.01, * p<0.05$.

Table 10: Predictors of Having any Debt

	$\begin{gathered} \text { ISAs } \\ (1) \\ \hline \end{gathered}$	ISAs	ISAs	ISAs (4)	$\begin{gathered} \text { ISAs } \\ (5) \\ \hline \end{gathered}$	$\begin{gathered} \text { ISAs } \\ (6) \\ \hline \end{gathered}$	ISAs	$\begin{gathered} \text { ISAs } \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} \text { ISAs } \\ (9) \\ \hline \end{gathered}$	ISAs (10)
Numeracy index (calculations)	$\begin{gathered} 0.046 * * * \\ (0.010) \\ {[0.081]} \end{gathered}$	$\begin{gathered} 0.047 * * * \\ (0.010) \\ {[0.082]} \end{gathered}$	$\begin{gathered} 0.047 * * * \\ (0.010) \\ {[0.082]} \end{gathered}$	$\begin{gathered} 0.047 * * * \\ (0.010) \\ {[0.083]} \end{gathered}$	$\begin{gathered} 0.049 * * * \\ (0.010) \\ {[0.086]} \end{gathered}$	$\begin{gathered} 0.050 * * * \\ (0.010) \\ {[0.087]} \end{gathered}$	$\begin{gathered} 0.045 * * * \\ (0.010) \\ {[0.079]} \end{gathered}$	$\begin{gathered} 0.046 * * * \\ (0.010) \\ {[0.080]} \end{gathered}$	$\begin{gathered} 0.046 * * * \\ (0.010) \\ {[0.080]} \end{gathered}$	$\begin{gathered} 0.046 * * * \\ (0.010) \\ {[0.081]} \end{gathered}$
Working memory (word recall)	$\begin{gathered} 0.009 * * * \\ (0.003) \\ {[0.060]} \end{gathered}$	$\begin{gathered} 0.009 * * * \\ (0.003) \\ {[0.059]} \end{gathered}$			$\begin{gathered} 0.010 * * * \\ (0.003) \\ {[0.063]} \end{gathered}$	$\begin{gathered} 0.010 * * * \\ (0.003) \\ {[0.062]} \end{gathered}$	$\begin{gathered} 0.009 * * \\ (0.003) \\ {[0.056]} \end{gathered}$	$\begin{gathered} 0.009 * * \\ (0.003) \\ {[0.056]} \end{gathered}$		
Verbal fluency (word finding)	$\begin{gathered} 0.001 \\ (0.001) \\ {[0.012]} \end{gathered}$		$\begin{gathered} 0.001 \\ (0.001) \\ {[0.013]} \end{gathered}$	$\begin{gathered} 0.000 \\ (0.001) \\ {[0.004]} \end{gathered}$				-0.000 (0.001) $[-0.003]$		$\begin{gathered} -0.000 \\ (0.001) \\ {[-0.003]} \end{gathered}$
Accuracy and speed	$\begin{gathered} 0.002 \\ (0.001) \\ {[0.022]} \end{gathered}$	$\begin{gathered} 0.002 \\ (0.001) \\ {[0.023]} \end{gathered}$	$\begin{gathered} 0.002 \\ (0.001) \\ {[0.022]} \end{gathered}$	$\begin{gathered} 0.002 \\ (0.001) \\ {[0.022]} \end{gathered}$	$\begin{gathered} 0.002 \\ (0.001) \\ {[0.021]} \end{gathered}$	$\begin{gathered} 0.002 \\ (0.001) \\ {[0.021]} \end{gathered}$	$\begin{gathered} 0.002 \\ (0.001) \\ {[0.020]} \end{gathered}$	$\begin{gathered} 0.002 \\ (0.001) \\ {[0.021]} \end{gathered}$	$\begin{gathered} 0.002 \\ (0.001) \\ {[0.020]} \end{gathered}$	0.002 (0.001) [0.021]
Literacy score			$\begin{gathered} 0.009 \\ (0.018) \\ {[0.008]} \end{gathered}$		0.019 (0.018) [0.017]			$\begin{gathered} 0.008 \\ (0.018) \\ {[0.007]} \end{gathered}$		
Planner	$\begin{gathered} 0.170 * * * \\ (0.016) \\ {[0.169]} \end{gathered}$	$\begin{gathered} 0.173 * * * \\ (0.016) \\ {[0.173]} \end{gathered}$					$\begin{gathered} 0.165 * * * \\ (0.016) \\ {[0.165]} \end{gathered}$	$\begin{gathered} 0.168 * * * \\ (0.016) \\ {[0.168]} \end{gathered}$		
Non-planner			$\begin{gathered} -0.178 * * * \\ (0.021) \\ {[-0.139]} \end{gathered}$	$\begin{gathered} -0.178 * * * \\ (0.021) \\ {[-0.139]} \end{gathered}$					$\begin{gathered} -0.170 * * * \\ (0.021) \\ {[-0.133]} \end{gathered}$	$\begin{gathered} -0.170 * * * \\ (0.021) \\ {[-0.133]} \end{gathered}$
Self-control (moderately exercising)					$\begin{gathered} 0.048 * * * \\ (0.008) \\ {[0.100]} \end{gathered}$	$\begin{gathered} 0.048 * * * \\ (0.008) \\ {[0.101]} \end{gathered}$	$\begin{gathered} 0.044 * * * \\ (0.008) \\ {[0.091]} \end{gathered}$	$\begin{gathered} 0.044 * * * \\ (0.008) \\ {[0.091]} \end{gathered}$	$\begin{gathered} 0.044 * * * \\ (0.008) \\ {[0.091]} \end{gathered}$	$\begin{gathered} 0.044 * * * \\ (0.008) \\ {[0.091]} \end{gathered}$
Observations	3,743	3,743	3,743	3,743	3,743	3,743	3,743	3,743	3,743	3,743
R-squared	0.133	0.132	0.125	0.122	0.116	0.113	0.140	0.139	0.132	0.129

The sample is based on wave 1 of ELSA, including only individuals aged 50 to 70 years old. Each column shows results from a different regression, with the outcome being a dummy variable equal to 1 if an individual had any ISAs and zero otherwise. The regressions in columns (2), (4), (6), (8) and (10) use the survey weights. All regressions control for a female dummy, a white dummy, age group dummies, health status dummies, social class dummies, marital status dummies and whether the respond has any children. Standard errors in round brackets and standardised coefficients in square brackets. ${ }^{* * *} \mathrm{p}<0.001, * * \mathrm{p}<0.01, * \mathrm{p}<0.05$.

Table 11: Predictors of ISA Holdings

	Risky assets (1)	Risky assets (2)	Risky assets (3)	Risky assets (4)	Risky assets (5)	Risky assets (6)	Risky assets (7)	Risky assets (8)	Risky assets (9)	Risky assets (10)
Numeracy index (calculations)	$\begin{gathered} 0.049 * * * \\ (0.010) \\ {[0.086]} \end{gathered}$	$\begin{gathered} 0.050 * * * \\ (0.010) \\ {[0.088]} \end{gathered}$	$\begin{gathered} 0.050 * * * \\ (0.010) \\ {[0.087]} \end{gathered}$	$\begin{gathered} 0.050 * * * \\ (0.010) \\ {[0.089]} \end{gathered}$	$\begin{gathered} 0.052 * * * \\ (0.010) \\ {[0.092]} \end{gathered}$	$\begin{gathered} 0.053 * * * \\ (0.010) \\ {[0.093]} \end{gathered}$	$\begin{gathered} 0.049 * * * \\ (0.010) \\ {[0.085]} \end{gathered}$	$\begin{gathered} 0.049 * * * \\ (0.010) \\ {[0.087]} \end{gathered}$	$\begin{gathered} 0.049 * * * \\ (0.010) \\ {[0.086]} \end{gathered}$	$\begin{gathered} 0.050 * * * \\ (0.010) \\ {[0.088]} \end{gathered}$
Working memory (word recall)	$\begin{gathered} 0.007 * * \\ (0.003) \\ {[0.041]} \end{gathered}$	$\begin{gathered} 0.007 * * * \\ (0.003) \\ {[0.045]} \end{gathered}$			$\begin{gathered} 0.007 * * * \\ (0.003) \\ {[0.047]} \end{gathered}$	$\begin{gathered} 0.008 * * * \\ (0.003) \\ {[0.050]} \end{gathered}$	$\begin{gathered} 0.006^{* *} \\ (0.003) \\ {[0.039]} \end{gathered}$			
Verbal fluency (word finding)	$\begin{gathered} -0.000 \\ (0.001) \\ {[-0.001]} \end{gathered}$	$\begin{gathered} -0.000 \\ (0.001) \\ {[-0.006]} \end{gathered}$	$\begin{gathered} -0.000 \\ (0.001) \\ {[-0.000]} \end{gathered}$	$\begin{gathered} -0.000 \\ (0.001) \\ {[-0.006]} \end{gathered}$	$\begin{gathered} -0.000 \\ (0.001) \\ {[-0.002]} \end{gathered}$	$\begin{gathered} -0.001 \\ (0.001) \\ {[-0.008]} \end{gathered}$	$\begin{gathered} -0.000 \\ (0.001) \\ {[-0.004]} \end{gathered}$	$\begin{gathered} -0.001 \\ (0.001) \\ {[-0.009]} \end{gathered}$	$\begin{gathered} -0.000 \\ (0.001) \\ {[-0.003]} \end{gathered}$	$\begin{gathered} -0.001 \\ (0.001) \\ {[-0.009]} \end{gathered}$
Accuracy and speed	$\begin{gathered} 0.000 \\ (0.001) \\ {[0.005]} \end{gathered}$	$\begin{gathered} 0.001 \\ (0.001) \\ {[0.007]} \end{gathered}$	$\begin{gathered} 0.000 \\ (0.001) \\ {[0.004]} \end{gathered}$	$\begin{gathered} 0.001 \\ (0.001) \\ {[0.007]} \end{gathered}$	$\begin{gathered} 0.000 \\ (0.001) \\ {[0.004]} \end{gathered}$	$\begin{gathered} 0.001 \\ (0.001) \\ {[0.006]} \end{gathered}$	$\begin{gathered} 0.000 \\ (0.001) \\ {[0.004]} \end{gathered}$	$\begin{gathered} 0.001 \\ (0.001) \\ {[0.006]} \end{gathered}$	$\begin{gathered} 0.000 \\ (0.001) \\ {[0.003]} \end{gathered}$	$\begin{gathered} 0.001 \\ (0.001) \\ {[0.006]} \end{gathered}$
Literacy score					$\begin{gathered} 0.050 * * * \\ (0.018) \\ {[0.046]} \end{gathered}$	$\begin{gathered} 0.050 * * * \\ (0.018) \\ {[0.045]} \end{gathered}$				
Planner	$\begin{gathered} 0.168 * * * \\ (0.016) \\ {[0.167]} \end{gathered}$	$\begin{gathered} 0.174 * * * \\ (0.016) \\ {[0.173]} \end{gathered}$					$\begin{gathered} 0.165 * * * \\ (0.016) \\ {[0.165]} \end{gathered}$	$\begin{gathered} 0.171 * * * \\ (0.016) \\ {[0.171]} \end{gathered}$		
Non-planner			$\begin{gathered} -0.166^{* * *} \\ (0.020) \\ {[-0.130]} \end{gathered}$	$\begin{gathered} -0.172 * * * \\ (0.020) \\ {[-0.134]} \end{gathered}$					$\begin{gathered} -0.162 * * * \\ (0.020) \\ {[-0.127]} \end{gathered}$	$\begin{gathered} -0.168 * * * \\ (0.020) \\ {[-0.131]} \end{gathered}$
Self-control (moderately exercising)					$\begin{gathered} 0.025 * * * \\ (0.008) \\ {[0.052]} \end{gathered}$	$\begin{gathered} 0.026 * * * \\ (0.008) \\ {[0.054]} \end{gathered}$	$\begin{gathered} 0.021 * * * \\ (0.008) \\ {[0.043]} \end{gathered}$	$\begin{gathered} 0.021 * * * \\ (0.008) \\ {[0.043]} \end{gathered}$	$\begin{gathered} 0.021 * * * \\ (0.008) \\ {[0.044]} \end{gathered}$	$\begin{gathered} 0.021 * * * \\ (0.008) \\ {[0.044]} \end{gathered}$
Observations	3,743	3,743	3,743	3,743	3,743	3,743	3,743	3,743	3,743	3,743
R -squared	0.180	0.179	0.170	0.168	0.158	0.154	0.182	0.180	0.172	0.170

The sample is based on wave 1 of ELSA, including only individuals aged 50 to 70 years old. Each column shows results from a different regression, with the outcome being a dummy variable equal to 1 if an individual had any stocks, shares or trusts and zero otherwise. The regressions in columns (2), (4), (6), (8) and (10) use the survey weights. All regressions control for a female dummy, a white dummy, age group dummies, health status dummies, social class dummies, marital status dummies and whether the respond has any children. Standard errors in round brackets and standardised coefficients in square brackets. ${ }^{* * *} \mathrm{p}<0.001$, ${ }^{* *} \mathrm{p}<0.01,{ }^{*} \mathrm{p}<0.05$.

Table 12: Predictors of Stocks, Shares or Trusts Holdings

6 Conclusion

The aim of this paper is to provide a systematic analysis of the link between various dimensions of cognitive ability and financial outcomes. Our contribution is twofold. First, we propose a conceptual framework that synthesises findings from several strands of the literature by accounting for different channels through which heterogeneity in cognitive ability may manifest itself, that is revealed preferences, financial literacy, planning, and self-control.

Second, we test the framework using the representative ELSA dataset, containing measures of multiple dimensions of cognitive ability as well as finely dis-aggregated financial outcomes. We find that numeracy, literacy, and working memory are strong predictors of different measures of wealth level and composition, after controlling for a rich set of demographic characteristics. Despite the fact that planning is strongly correlated with all three dimensions of cognitive ability, its inclusion does not statistically significantly reduce the coefficients on the cognitive ability measures for any of our financial outcomes.

Accordingly, future research should prioritise a more precise understanding of the pathways through which differences in particular dimensions of cognitive ability may influence key financial outcomes. In our view, a more accurate representation of the underlying decision-making processes would allow to design more effective policy interventions in the domain of household finance. More specifically, the reviews by Bernheim and Taubinsky (2018) and Beshears et al. (2018) highlight the fact that empirical evidence on the effectiveness of various interventions motivated by bounded rationality, such as financial education and choice simplification, is far from conclusive. This is likely to be the case not only because these interventions vary substantially in their design, but also due to the lack of evidence on the underlying mechanisms. To that end, our findings indicate that even after controlling for planning behaviour and ability to exercise self-control, there exist important differences in outcomes attained by individuals differing in cognitive ability. This suggests that interventions targeting specifically the ultimate nodes of the decision-making process, such as providing planning tools or information in a simplified format, can mitigate the effects of heterogeneous cognitive ability on financial outcomes only to a limited extent.

References

Agarwal, S. and B. MaZumder (2013): "Cognitive abilities and household financial decision making," American Economic Journal: Applied Economics, 5, 193-207.

Alan, S. AND S. ERTAC (2018): "Fostering Patience in the Classroom: Results from Randomized Educational Intervention,"Journal of Political Economy, 126, 1865-1911.

Ameriks, J., A. Caplin, and J. Leahy (2003): "Wealth Accumulation and the Propensity to Plan," The Quarterly Journal of Economics, 118, 1007-1047.

Banks, J., R. Blundell, C. Lessof, M. Marmot, and J. Nazroo (2003): Health, wealth and lifestyles of the older population in England: ELSA 2002, Institute of Fiscal Studies.

Banks, J., R. Crawford, and G. Tetlow (2015): "Annuity choices and income drawdown: evidence from the decumulation phase of defined contribution pensions in England," Journal of Pension Economics \& Finance, 14, 412-438.

BANKS, J. AND Z. OLDFIELD (2007): "Understanding pensions: Cognitive function, numerical ability and retirement saving," Fiscal Studies, 28, 143-170.

BANKS, J., C. O'DEA, AND Z. OldFIELD (2010): "Cognitive function, numeracy and retirement saving trajectories," The Economic Journal, 120, F381-F410.

Benhabib, J. and A. Bisin (2005): "Modeling internal commitment mechanisms and self-control: A neuroeconomics approach to consumption-saving decisions," Games and Economic Behavior, 52, 460-492.

Benjamin, D. J., S. A. Brown, and J. M. Shapiro (2013): "Who is 'behavioral'? Cognitive ability and anomalous preferences,"Journal of the European Economic Association, 11, 1231-1255.

Bernheim, B. D. and D. Taubinsky (2018): "Behavioral Public Economics," in Handbook of Behavioral Economics: Applications and Foundations 1, vol. 1, 381-516.

Beshears, J., J. J. Choi, D. Laibson, and B. C. Madrian (2018): "Behavioral household finance," in Handbook of Behavioral Economics: Applications and Foundations 1, vol. 1, 177-276.

Borghans, L., A. L. Duckworth, J. J. Heckman, and B. Ter Weel (2008): "The Economics and Psychology of Personality Traits,"Journal of Human Resources, 43, 972-1059.

Camerer, C. F. (2013): "Goals, Methods, and Progress in Neuroeconomics," The Annual Review of Economics, 5, 425-455.

Carroll, J. B. (1993): Human cognitive abilities: A survey of factor-analytic studies, Cambridge University Press.

Cattell, R. B. (1971): Abilities: Their structure, growth, and action., Houghton Mifflin.
_- (1987): Intelligence: Its structure, growth and action, Elsevier.

Choi, J. J., D. Laibson, and B. C. Madrian (2010): "Why Does the Law of One Price Fail? An Experiment on Index Mutual Funds," The Review of Financial Studies, 23, 1405-1432.

- (2011): " $\$ 100$ Bills on the Sidewalk: Suboptimal Investment in 401 (k) Plans," Review of Economics and Statistics, 93, 748-763.

Christelis, D., T. Jappelli, and M. Padula (2010): "Cognitive abilities and portfolio choice," European Economic Review, 54, 18-38.

Cobb-Clark, D. A., S. C. Dahmann, D. Kamhöfer, and H. Schildberg-Hörisch (2021): "Sophistication about Self-Control," IZA DP No. 14609.

Craik, F. I. and E. Bialystok (2006): "Cognition Through the Lifespan: Mechanisms of Change," Trends in Cognitive Sciences, 10, 131-138.

Deary, I. J. (2014): "The Stability of Intelligence from Childhood to Old Age," Current Directions in Psychological Science, 23, 239-245.

Deary, I. J., A. Pattie, and J. M. Starr (2013): "The Stability of Intelligence from Age 11 to Age 90 Years: The Lothian Birth Cohort of 1921," Psychological Science, 24, 2361-2368.

Dohmen, T., A. Falk, D. Huffman, and U. Sunde (2010): "Are Risk Aversion and Impatience Related to Cognitive Ability?" American Economic Review, 100, 1238-60.

Duckworth, A. L., K. L. Milkman, and D. Laibson (2018): "Beyond Willpower: Strategies for Reducing Failures of Self-Control," Psychological Science in the Public Interest, 19, 102-129.

Estrada-Mejia, C., M. de Vries, and M. Zeelenberg (2016): "Numeracy and Wealth," Journal of Economic Psychology, 54, 53-63.

Frederick, S. (2005): "Cognitive Reflection and Decision Making,"Journal of Economic Perspectives, 19, 25-42.

Fudenberg, D. And D. K. Levine (2006): "A Dual-Self Model of Impulse Control," American Economic Review, 96, 1449-1476.

Gul, F. and W. Pesendorfer (2001): "Temptation and Self-Control," Econometrica, 69, 1403-1435.

Gustman, A. L., T. L. Steinmeier, and N. Tabatabai (2012): "Financial knowledge and financial literacy at the household level," American Economic Review, 102, 309-13.

Horn, J. L. and J. J. McArdle (2007): "Understanding human intelligence since Spearman," Factor analysis at 100, 205-247.

Hung, A. A., J. Luoto, and A. M. Parker (2018): Cognitive ability and retirement decision making, RAND.

Jappelli, T. and M. Padula (2013): "Investment in financial literacy and saving decisions," Journal of Banking \& Finance, 37, 2779-2792.

Laibson, D. (1997): "Golden Eggs and Hyperbolic Discounting," The Quarterly Journal of Economics, 112, 443-478.

Lusardi, A., P.-C. Michaud, and O. S. Mitchell (2017): "Optimal financial knowledge and wealth inequality," Journal of Political Economy, 125, 431-477.

Lusardi, A. and O. S. Mitchell (2007): "Baby Boomer Retirement Security: The Roles of Planning, Financial Literacy, and Housing Wealth," Journal of Monetary Economics, 54, 205-224.
-_ (2011): "Financial Literacy and Planning: Implications for Retirement Wellbeing," Tech. rep., National Bureau of Economic Research.

- (2014): "The economic importance of financial literacy: Theory and evidence," Journal of Economic Literature, 52, 5-44.

Martin-Bassols, N. (2024): "Risky and Non-Risky Financial Investments and Cognition," Journal of Economic Psychology, 100, 102677.

Smith, J. P., J. J. McArdle, and R. Willis (2010): "Financial decision making and cognition in a family context," The Economic Journal, 120, F363-F380.

Spearman, C. (1904): "General Intelligence, objectively determined and measured," American Journal of Psychology, 15, 201-293.

Strotz, R. H. (1955): "Myopia and Inconsistency in Dynamic Utility Maximization," The Review of Economic Studies, 23, 165-180.

Sulka, T. (2023): "Planning and Saving for Retirement," European Economic Review, 160, 104609.

Multidimensional Cognitive Ability, Intermediate Channels, and Financial Outcomes - Appendix

Ştefania Simion and Tomasz Sulka

A Application of the Theoretical Framework

Consider a stylised application of our unifying theoretical framework to an inter-temporal consumption smoothing problem. An agent is characterised by cognitive ability $\boldsymbol{x} \in \mathbb{R}_{+}^{K}, K \geq 1$. They derive utility $U(\mathbf{c} \mid \boldsymbol{\theta})$ from a consumption path $\mathbf{c}=\left(c_{1}, c_{2}, \ldots, c_{T}\right), T>1$, where $\boldsymbol{\theta}(\boldsymbol{x}): \mathbb{R}_{+}^{K} \rightarrow \mathbb{R}_{+}^{L}, L \geq 1$, denotes a vector of preferences, which is allowed to be a function of cognitive ability. Finally, define a "default" consumption path \mathbf{c}^{d} corresponding to status quo, which is determined by past actions and current decision environment.
To account for the notion of cognitive costs of planning, suppose that departures from the default consumption path impose a fixed $\operatorname{cost} \phi(\boldsymbol{x}) \geq 0$. The agent's cost of planning is decreasing in their cognitive ability, with $\frac{\partial \phi}{\partial x_{i}} \leq 0$ capturing the impact of a specific dimension i of cognitive ability.
If the agent engages in costly planning, their objective is to maximise utility subject to the budget constraint:

$$
\max _{\mathbf{c}} U(\mathbf{c} \mid \boldsymbol{\theta}), \quad \text { s.t. } \mathbf{c} \in \mathcal{C} .
$$

To account for the role of financial literacy, suppose that acquiring financial knowledge allows the agent to relax the budget constraint. This is represented by a "budget wedge" λ, which is strictly decreasing in financial knowledge. However, accumulating financial knowledge is costly, with the cost associated with wedge λ denoted by $\psi(\lambda \mid \boldsymbol{x})$. Then, the agent's budget set is:

$$
\mathcal{C} \equiv\left\{\mathbf{c} \left\lvert\, \sum_{t=1}^{T} \frac{c_{t}}{(1+r)^{t-1}}+\lambda-\psi(\lambda \mid \boldsymbol{x}) \leq \sum_{t=1}^{T} \frac{c_{t}^{d}}{(1+r)^{t-1}}\right.\right\} .
$$

As long as $\psi(\lambda \mid \boldsymbol{x}) \geq 0$ is decreasing, strictly convex, and satisfies the Inada conditions $\lim _{\lambda \rightarrow \infty} \frac{\partial \psi}{\partial \lambda}=0$ and $\lim _{\lambda \rightarrow-\infty} \frac{\partial \psi}{\partial \lambda}=+\infty$, there exists a unique level of financial knowledge that the agent optimally acquires. Furthermore, if the marginal cost of financial knowledge is decreasing in cognitive ability, i.e. $\frac{\partial^{2} \psi}{\partial x_{i} \partial \lambda} \leq 0$, then greater cognitive ability results in higher optimal financial knowledge and consequently in a smaller budget wedge.

Finally, having devised an optimal plan \mathbf{c}^{*}, the agent needs to exert enough self-control in order to execute it. Capturing the notion of costly self-control in a reduced form, suppose that the consumption path ultimately chosen by the agent $\hat{\mathbf{c}}$ is a convex combination of the default path and the optimal plan:

$$
\hat{\mathbf{c}}=\nu(\boldsymbol{x}) \mathbf{c}^{*}+(1-\nu(\boldsymbol{x})) \mathbf{c}^{d},
$$

where the self-control parameter $\nu(\boldsymbol{x}) \in[0,1]$ is increasing in cognitive ability, i.e. $\frac{\partial \nu}{\partial x_{i}} \geq 0$.
In sum, the agent's optimal plan \mathbf{c}^{*} and the resulting action $\hat{\mathbf{c}}$ satisfy:

$$
\max _{\mathbf{c}^{*}, \lambda} U(\hat{\mathbf{c}} \mid \boldsymbol{\theta}), \quad \text { s.t.: }
$$

1. $\hat{\mathbf{c}} \in \mathcal{C} \equiv\left\{\mathbf{c} \left\lvert\, \quad \sum_{t=1}^{T} \frac{c_{t}}{(1+r)^{t-1}}+\lambda-\psi(\lambda \mid \boldsymbol{x}) \leq \sum_{t=1}^{T} \frac{c_{t}^{d}}{(1+r)^{t-1}}\right.\right\}$,
2. $\hat{\mathbf{c}}=\nu(\boldsymbol{x}) \mathbf{c}^{*}+(1-\nu(\boldsymbol{x})) \mathbf{c}^{d}$,
provided that the above exceeds $U\left(\mathbf{c}^{d} \mid \boldsymbol{\theta}\right)+\phi(\boldsymbol{x})$. Otherwise, $\hat{\mathbf{c}}=\mathbf{c}^{*}=\mathbf{c}^{d}$ at the optimum.
Without imposing further structure and additional assumptions, the model yields some natural predictions. First, greater cognitive ability (in relevant dimensions) increases the agent's propensity to actively plan their consumption. Second, conditional on planning, cognitive ability affects the features of the optimal plan through its impact on the agent's preferences and the optimal level of financial knowledge. Third, given the optimal plan, greater cognitive ability allows the agent to carry out the plan more thoroughly.

B Additional Tables

	Mean All Sample (1)	Mean Sample of Analysis (2)
Age	59.041	59.077
White	0.973	0.961
Female	0.322	0.325
Whether kids	0.859	0.855
Marital Status		
Married/co-habitating	0.673	0.68
Single	0.063	0.064
Widowed	0.107	0.102
Separated/Divorced	0.158	0.155
Health Status	0.476	0.462
Excellent/Very Good Health	0.304	0.299
Good Health	0.220	0.24
Fair/Poor Health		
Highest education level attained	0.073	0.08
No Qualifications	0.634	
Less than High-school	0.624	0.129
High-school	0.137	0.157
More than High-school	0.166	0.213
Other	0.205	
Social Class		0.05
Disadvantaged	0.044	0.141
Routine	0.144	0.361
Intermediate	0.362	0.235
High	0.245	

Notes: The sample is based on wave 1 of ELSA. The first column shows the mean for the entire sample with non-missing demographics (4,838 observations); the second column shows the mean for the sample used in the analysis. All measures are weighted using the survey weights.

Table B1: Balancing test

C Measuring Numeracy

The six questions asked to the respondents that we used to create the measure of numeracy were:

1. If you buy a drink for 85 pence and pay with a one pound coin, how much change should you get?
2. In a sale, a shop is selling all items at half price. Before the sale a sofa costs $£ 300$. How much will it cost in the sale?
3. If the chance of getting a disease is 10 per cent, how many people out of 1,000 would be expect to get the disease?
4. A second hand car dealer is selling a car for $£ 6,000$. This is two-thirds of what it cost new. How much did the car cost new?
5. If 5 people all have the winning numbers in the lottery and the prize is $£ 2$ million, how much will each of them get?
6. Let’s say you have $£ 200$ in a savings account. The account earns ten per cent interest per year. How much will you have in the account at the end of two years?

A respondent is initially asked questions 2-4. If they answer all of them incorrectly, they are asked question 1. Otherwise, the are asked question 5. If a respondent answered any of the questions 3-5 correctly, they are additionally asked question 6 . Given that respondents might be answering different subsets of questions, we construct a numeracy index as in Banks and Oldfield (2007) by dividing the respondents into four groups:
(i) Questions 2-4 all incorrect; or question 2 correct and questions 3-5 all incorrect.
(ii) At least one of questions 2-5 incorrect and question 6 incorrect.
(iii) Questions 2-5 all correct and question 6 incorrect; or question 6 correct and at least one of questions 2-5 incorrect.
(iv) Questions 2-6 all correct.

D Fluid Intelligence

We use the respondents performance on a number series test in order to construct a measure of fluid intelligence. In this test, a respondent is asked to deduct a missing number in a series following a logical, but unknown, pattern - for example, "what should be the next number in a series of $23,26,30,35, \ldots$?". The respondents were always asked six questions, but of varying difficulty. We thus construct a fluid intelligence score by summing up correct responses and weighting them by their difficult. ${ }^{a}$
The resulting score ranges from 0 to 7.5 , with a sample average of 3.8 in our sample, restricted to only 2,410 individuals. One should note that the test used to create the measure of fluid intelligence was asked for the first time in wave 6 , so we used this to extrapolate our measure in wave 1 . While this is not ideal given that we are using data 10 years apart, our robustness check shows that there is a high level of correlation of 0.59 between the measure of fluid intelligence in waves 6 and 9 (i.e., 6 years apart), the only two years in which this test was run.

In Table D1 we look at the pairwise correlations of our measure of fluid intelligence and the other measures of cognitive ability. What emerges from this table is that despite high correlations between numeracy and fluid intelligence, the correlations are far from perfect.

	Numeracy index	Working memory	Literacy score	Verbal fluency	Accuracy and speed	Fluid intelligence
Fluid intelligence	0.516	0.339	0.267	0.292	0.180	1.0000

Notes: The sample is based on 2,410 individuals from wave 1 of ELSA. All measures are weighted using the survey weights.

Table D1: Pairwise Correlations - Measures of Cognition

[^14]| | Financial wealth
 (1) | Financial wealth (2) | Total wealth (3) | Total wealth
 (4) | Net total wealth (5) | Net total wealth (6) | Debt
 (7) | Debt
 (8) | $\begin{gathered} \text { ISAs } \\ (9) \end{gathered}$ | ISAs
 (10) | Risky assets
 (11) | Risky assets (12) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Numeracy index (calculations) | | $\begin{gathered} 0.318 * * * \\ (0.072) \\ {[0.093]} \end{gathered}$ | | $\begin{gathered} 0.357 * * * \\ (0.076) \\ {[0.103]} \end{gathered}$ | | $\begin{gathered} 0.515 * * * \\ (0.126) \\ {[0.093]} \end{gathered}$ | $\begin{gathered} -0.010 \\ (0.013) \\ {[-0.018]} \end{gathered}$ | | | $\begin{aligned} & 0.028^{*} \\ & (0.014) \\ & {[0.049]} \end{aligned}$ | $\begin{gathered} 0.051 * * * \\ (0.012) \\ {[0.089]} \end{gathered}$ | |
| Working memory (word recall) | $\begin{gathered} 0.036 \\ (0.019) \\ {[0.037]} \end{gathered}$ | $\begin{gathered} 0.026 \\ (0.019) \\ {[0.027]} \end{gathered}$ | $\begin{gathered} -0.002 \\ (0.020) \\ {[-0.002]} \end{gathered}$ | $\begin{gathered} -0.007 \\ (0.020) \\ {[-0.007]} \end{gathered}$ | $\begin{gathered} -0.003 \\ (0.033) \\ {[-0.002]} \end{gathered}$ | $\begin{gathered} -0.011 \\ (0.033) \\ {[-0.007]} \end{gathered}$ | $\begin{gathered} -0.002 \\ (0.004) \\ {[-0.014]} \end{gathered}$ | | $\begin{aligned} & 0.008^{*} \\ & (0.004) \\ & {[0.050]} \end{aligned}$ | $\begin{gathered} 0.007 \\ (0.004) \\ {[0.041]} \end{gathered}$ | $\begin{gathered} 0.003 \\ (0.003) \\ {[0.019]} \end{gathered}$ | 0.002
 (0.003)
 [0.011] |
| Verbal fluency (word finding) | $\begin{gathered} 0.014 \\ (0.009) \\ {[0.030]} \end{gathered}$ | $\begin{gathered} 0.012 \\ (0.009) \\ {[0.026]} \end{gathered}$ | $\begin{gathered} 0.015 \\ (0.010) \\ {[0.031]} \end{gathered}$ | $\begin{gathered} 0.014 \\ (0.010) \\ {[0.029]} \end{gathered}$ | $\begin{gathered} 0.009 \\ (0.016) \\ {[0.012]} \end{gathered}$ | $\begin{gathered} 0.007 \\ (0.016) \\ {[0.009]} \end{gathered}$ | $\begin{gathered} 0.001 \\ (0.002) \\ {[0.013]} \end{gathered}$ | $\begin{gathered} 0.001 \\ (0.002) \\ {[0.015]} \end{gathered}$ | $\begin{gathered} 0.000 \\ (0.002) \\ {[0.001]} \end{gathered}$ | $\begin{gathered} -0.000 \\ (0.002) \\ {[-0.003]} \end{gathered}$ | $\begin{gathered} -0.000 \\ (0.002) \\ {[-0.006]} \end{gathered}$ | $\begin{gathered} -0.001 \\ (0.002) \\ {[-0.010]} \end{gathered}$ |
| Accuracy and speed | $\begin{gathered} 0.012 \\ (0.010) \\ {[0.023]} \end{gathered}$ | $\begin{gathered} 0.009 \\ (0.010) \\ {[0.017]} \end{gathered}$ | $\begin{gathered} 0.013 \\ (0.010) \\ {[0.024]} \end{gathered}$ | $\begin{gathered} 0.011 \\ (0.010) \\ {[0.021]} \end{gathered}$ | $\begin{gathered} 0.001 \\ (0.017) \\ {[0.001]} \end{gathered}$ | $\begin{aligned} & -0.001 \\ & (0.017) \\ & {[-0.001]} \end{aligned}$ | $\begin{gathered} 0.003 \\ (0.002) \\ {[0.038]} \end{gathered}$ | 0.004 (0.002) [0.041] | $\begin{gathered} 0.002 \\ (0.002) \\ {[0.025]} \end{gathered}$ | $\begin{gathered} 0.002 \\ (0.002) \\ {[0.020]} \end{gathered}$ | $\begin{gathered} 0.001 \\ (0.002) \\ {[0.015]} \end{gathered}$ | $\begin{gathered} 0.001 \\ (0.002) \\ {[0.011]} \end{gathered}$ |
| Literacy score | $\begin{gathered} 0.181 \\ (0.122) \\ {[0.0271} \end{gathered}$ | $\begin{gathered} 0.130 \\ (0.123) \\ {[0.019]} \end{gathered}$ | $\begin{aligned} & 0.286^{*} \\ & (0.129) \\ & {[0.041]} \end{aligned}$ | $\begin{aligned} & 0.259^{*} \\ & (0.130) \\ & {[0.037]} \end{aligned}$ | $\begin{gathered} 0.418 \\ (0.214) \\ {[0.038]} \end{gathered}$ | $\begin{gathered} 0.374 \\ (0.215) \\ {[0.034]} \end{gathered}$ | $\begin{gathered} 0.031 \\ (0.024) \\ {[0.027]} \end{gathered}$ | $\begin{gathered} 0.034 \\ (0.024) \end{gathered}$ [0.031] | $\begin{gathered} -0.006 \\ (0.023) \\ {[-0.005]} \end{gathered}$ | $\begin{gathered} -0.013 \\ (0.023) \\ \lceil-0.012\rceil \end{gathered}$ | $\begin{gathered} 0.039 \\ (0.022) \\ {[0.034]} \end{gathered}$ | $\begin{gathered} 0.032 \\ (0.022) \\ {[0.028]} \end{gathered}$ |
| Planner | | $\begin{gathered} 1.271 * * * \\ (0.107) \\ {[0.210]} \end{gathered}$ | $\begin{gathered} 0.846 * * * \\ (0.114) \\ {[0.138]} \end{gathered}$ | $\begin{gathered} 0.843 * * * \\ (0.114) \\ {[0.138]} \end{gathered}$ | | | $\begin{gathered} -0.064 * * \\ (0.021) \\ {[-0.064]} \end{gathered}$ | $\begin{gathered} -0.064 * * \\ (0.021) \\ {[-0.064]} \end{gathered}$ | $\begin{gathered} 0.175 * * * \\ (0.020) \\ {[0.174]} \end{gathered}$ | $\begin{gathered} 0.174 * * * \\ (0.020) \\ {[0.173]} \end{gathered}$ | $\begin{gathered} 0.153 * * * \\ (0.020) \\ {[0.152]} \end{gathered}$ | $\begin{gathered} 0.152^{* * *} \\ (0.020) \\ {[0.151]} \end{gathered}$ |
| Self-control (moderately exercising) | $\begin{gathered} 0.319 * * * \\ (0.055) \\ {[0.105]} \end{gathered}$ | $\begin{gathered} 0.307 * * * \\ (0.055) \\ {[0.101]} \end{gathered}$ | $\begin{gathered} 0.252 * * * \\ (0.058) \\ {[0.082]} \end{gathered}$ | $\begin{gathered} 0.246 * * * \\ (0.058) \\ {[0.080]} \end{gathered}$ | $\begin{gathered} 0.411 * * * \\ (0.097) \\ {[0.084]} \end{gathered}$ | $\begin{gathered} 0.402 * * * \\ (0.097) \\ {[0.082]} \end{gathered}$ | $\begin{gathered} -0.003 \\ (0.011) \\ {[-0.007]} \end{gathered}$ | $\begin{gathered} -0.003 \\ (0.011) \\ {[-0.005]} \end{gathered}$ | $\begin{gathered} 0.041 * * * \\ (0.010) \\ {[0.081]} \end{gathered}$ | $\begin{gathered} 0.039 * * * \\ (0.010) \\ {[0.078]} \end{gathered}$ | $\begin{gathered} 0.019 \\ (0.010) \\ {[0.038]} \end{gathered}$ | 0.018
 (0.010)
 [0.035] |
| Fluid intelligence score (number series) | | $\begin{gathered} 0.122^{* *} * \\ (0.032) \\ {[0.080]} \end{gathered}$ | | | | | | | | | | |
| Observations | 2,410 | 2,410 | 2,410 | 2,410 | 2,410 | 2,410 | 2,410 | 2,410 | 2,410 | 2,410 | 2,410 | 2,410 |
| R-squared | 0.324 | 0.328 | 0.264 | 0.265 | 0.210 | 0.211 | 0.081 | 0.081 | 0.133 | 0.136 | 0.190 | 0.192 |

 brackets and standardised coefficients in square brackets. ${ }^{* * *} \mathrm{p}<0.001, * * \mathrm{p}<0.01, * \mathrm{p}<0.05$.

Table D2: Predictors of Financial Outcomes

	Financial wealth (1)	Financial wealth (2)	Total wealth (3)	Total wealth (4)	Net total wealth (5)	Net total wealth (6)	Debt (7)	Debt (8)	ISAs (9)	ISAs (10)	Risky assets (11)	Risky assets (12)
Numeracy index (calculations)		$\begin{gathered} 0.321 * * * \\ (0.072) \\ {[0.094]} \end{gathered}$		$0.356 * * *$ (0.076) [0.103]	$\begin{gathered} 0.580 * * * \\ (0.118) \\ {[0.105]} \end{gathered}$	$\begin{gathered} 0.518 * * * \\ (0.126) \\ {[0.093]} \end{gathered}$	-0.010 (0.013) [-0.018]					
Working memory (word recall)		$\begin{gathered} 0.023 \\ (0.019) \\ {[0.024]} \end{gathered}$	$\begin{gathered} -0.007 \\ (0.020) \\ {[-0.007]} \end{gathered}$	-0.011 (0.020) [-0.011]					$\begin{aligned} & 0.008^{*} \\ & (0.004) \\ & {[0.047]} \end{aligned}$	0.007 (0.004) [0.041]	$\begin{gathered} 0.003 \\ (0.003) \\ {[0.017]} \end{gathered}$	$\begin{gathered} 0.002 \\ (0.003) \\ {[0.011]} \end{gathered}$
Verbal fluency (word finding)	$\begin{gathered} 0.014 \\ (0.009) \\ {[0.029]} \end{gathered}$	$\begin{gathered} 0.013 \\ (0.009) \\ {[0.027]} \end{gathered}$	$\begin{gathered} 0.014 \\ (0.009) \\ {[0.030]} \end{gathered}$	$\begin{gathered} 0.014 \\ (0.010) \\ {[0.029]} \end{gathered}$	$\begin{gathered} 0.008 \\ (0.016) \\ {[0.011]} \end{gathered}$	$\begin{gathered} 0.007 \\ (0.016) \\ {[0.010]} \end{gathered}$	$\begin{gathered} 0.001 \\ (0.002) \\ {[0.013]} \end{gathered}$	$\begin{gathered} 0.001 \\ (0.002) \\ {[0.014]} \end{gathered}$	$\begin{gathered} -0.000 \\ (0.002) \\ {[-0.000]} \end{gathered}$	$\begin{gathered} -0.000 \\ (0.002) \\ {[-0.002]} \end{gathered}$	$\begin{gathered} -0.001 \\ (0.002) \\ {[-0.007]} \end{gathered}$	$\begin{gathered} -0.001 \\ (0.002) \\ {[-0.008]} \end{gathered}$
Accuracy and speed	0.013 (0.010) [0.024]	0.010 (0.010) [0.019]	$\begin{gathered} 0.014 \\ (0.010) \\ {[0.025]} \end{gathered}$	$\begin{gathered} 0.012 \\ (0.010) \\ {[0.023]} \end{gathered}$	$\begin{gathered} 0.002 \\ (0.017) \\ {[0.003]} \end{gathered}$	$\begin{gathered} -0.000 \\ (0.017) \\ {[-0.000]} \end{gathered}$	0.003 (0.002) [0.039]	0.004* (0.002) [0.041]	$\begin{gathered} 0.002 \\ (0.002) \\ {[0.026]} \end{gathered}$	$\begin{gathered} 0.002 \\ (0.002) \\ {[0.021]} \end{gathered}$	$\begin{gathered} 0.001 \\ (0.002) \\ {[0.016]} \end{gathered}$	0.001 (0.002) [0.011]
Literacy score	$\begin{gathered} 0.134 \\ (0.121) \\ \Gamma 0.020\rceil \end{gathered}$	$\begin{gathered} 0.105 \\ (0.122) \\ {[0.015]} \end{gathered}$	$\begin{gathered} 0.243 \\ (0.128) \\ {[0.035]} \end{gathered}$	$\begin{gathered} 0.228 \\ (0.129) \\ {[0.033]} \end{gathered}$	$\begin{gathered} 0.363 \\ (0.213) \\ {[0.033]} \end{gathered}$	$\begin{gathered} 0.343 \\ (0.215) \\ {[0.031]} \end{gathered}$	$\begin{gathered} 0.029 \\ (0.024) \\ {[0.025]} \end{gathered}$	$\begin{gathered} 0.031 \\ (0.024) \\ {[0.027]} \end{gathered}$	$\begin{gathered} -0.010 \\ (0.023) \\ {[-0.009]} \end{gathered}$	$\begin{gathered} -0.014 \\ (0.023) \\ {[-0.012]} \end{gathered}$	$\begin{gathered} 0.037 \\ (0.022) \\ {[0.032]} \end{gathered}$	$\begin{gathered} 0.033 \\ (0.023) \\ {[0.029]} \end{gathered}$
Non-planner	$\begin{gathered} -1.356 * * * \\ (0.158) \\ {[-0.169]} \end{gathered}$	$\begin{gathered} -1.828 * * * \\ (0.141) \\ {[-0.228]} \end{gathered}$	$\begin{gathered} -1.259 * * * \\ (0.167) \\ {[-0.155]} \end{gathered}$	$\begin{gathered} -1.500 * * * \\ (0.149) \\ {[-0.184]} \end{gathered}$	$\begin{gathered} -1.571^{* * *} \\ (0.278) \\ {[-0.121]} \end{gathered}$	$\begin{gathered} -2.069 * * * \\ (0.248) \\ {[-0.159]} \end{gathered}$	-0.057 (0.031) $[-0.043]$	$\begin{aligned} & -0.007 \\ & (0.028) \\ & {[-0.006} \end{aligned}$	$\begin{gathered} -0.105 * * * \\ (0.030) \\ {[-0.079]} \end{gathered}$	$\begin{gathered} -0.187 * * * \\ (0.027) \\ {[-0.140]} \end{gathered}$	$\begin{gathered} -0.070^{*} \\ (0.029) \\ {[-0.052]} \end{gathered}$	$\begin{gathered} -0.146 * * * \\ (0.026) \\ {[-0.109]} \end{gathered}$
Self-control (moderately exercising)	(0.054) [0.097]	$\begin{gathered} 0.292 * * * \\ (0.055) \\ {[0.096]} \end{gathered}$	$\begin{gathered} 0.231 * * * \\ (0.058) \\ {[0.075]} \end{gathered}$	$\begin{gathered} 0.229 * * * \\ (0.058) \\ {[0.075]} \end{gathered}$	$\begin{gathered} 0.384 * * * \\ (0.096) \\ {[0.078]} \end{gathered}$	$\begin{gathered} 0.384 * * * \\ (0.096) \\ {[0.078]} \end{gathered}$	-0.004 (0.011) $[-0.009]$	$\begin{gathered} -0.004 \\ (0.011) \\ {[-0.009]} \end{gathered}$	$\begin{gathered} 0.039 * * * \\ (0.010) \\ {[0.078]} \end{gathered}$	$\begin{gathered} 0.039 * * * \\ (0.010) \\ {[0.077]} \end{gathered}$	0.018 (0.010) [0.036]	0.018 (0.010) [0.036]
Fluid intelligence score (number series)		$\begin{gathered} 0.114 * * * \\ (0.032) \\ {[0.075]} \end{gathered}$				0.093 (0.056) [0.038]						
Observations	2,410	2,410	2,410	2,410	2,410	2,410	2,410	2,410	2,410	2,410	2,410	2,410
R -squared	0.344	0.335	0.281	0.279	0.220	0.216	0.082	0.078	0.138	0.127	0.192	0.182

 brackets and standardised coefficients in square brackets. ${ }^{* * *} \mathrm{p}<0.001, * * \mathrm{p}<0.01, * \mathrm{p}<0.05$.

Table D3: Predictors of Financial Outcomes

	Financial wealth (1)	Financial wealth (2)	Total wealth (3)	Total wealth (4)	Net total wealth (5)	Net total wealth (6)	Debt (7)	Debt (8)	$\begin{gathered} \text { ISAs } \\ (9) \end{gathered}$	ISAs (10)	Risky assets (11)	Risky assets (12)
Numeracy index (calculations)			$0.359 * * *$ (0.076) [0.103]	$\begin{gathered} 0.359 * * * \\ (0.076) \\ {[0.103]} \end{gathered}$	$0.538^{* * *}$ (0.128) [0.096]	$\begin{gathered} 0.542 * * * \\ (0.128) \\ {[0.096]} \end{gathered}$	$\begin{gathered} -0.004 \\ (0.014) \\ {[-0.007]} \end{gathered}$		$\begin{aligned} & 0.028^{*} \\ & (0.014) \\ & {[0.049]} \end{aligned}$			
Working memory (word recall)	$\begin{gathered} 0.026 \\ (0.019) \\ {[0.027]} \end{gathered}$	$\begin{gathered} 0.022 \\ (0.019) \\ {[0.023]} \end{gathered}$	$\begin{gathered} -0.005 \\ (0.020) \\ {[-0.005]} \end{gathered}$	$\begin{gathered} -0.009 \\ (0.020) \\ {[-0.010]} \end{gathered}$	$\begin{gathered} -0.004 \\ (0.034) \\ {[-0.002]} \end{gathered}$	$\begin{gathered} -0.008 \\ (0.034) \\ {[-0.005]} \end{gathered}$	$\begin{gathered} -0.002 \\ (0.004) \\ {[-0.013]} \end{gathered}$	-0.002 (0.004) $[-0.015]$	$\begin{gathered} 0.007 \\ (0.004) \\ {[0.042]} \end{gathered}$	$\begin{gathered} 0.007 \\ (0.004) \\ {[0.041]} \end{gathered}$	$\begin{gathered} 0.003 \\ (0.003) \\ {[0.017]} \end{gathered}$	$\begin{gathered} 0.003 \\ (0.003) \\ {[0.016]} \end{gathered}$
Verbal fluency (word finding)	$\begin{gathered} 0.007 \\ (0.009) \\ {[0.014]} \end{gathered}$	$\begin{gathered} 0.006 \\ (0.009) \\ {[0.014]} \end{gathered}$	$\begin{gathered} 0.006 \\ (0.010) \\ {[0.013]} \end{gathered}$	$\begin{gathered} 0.006 \\ (0.010) \\ {[0.013]} \end{gathered}$	$\begin{gathered} -0.008 \\ (0.016) \\ {[-0.010]} \end{gathered}$	$\begin{gathered} -0.008 \\ (0.016) \\ {[-0.010]} \end{gathered}$	$\begin{gathered} 0.002 \\ (0.002) \\ {[0.021]} \end{gathered}$	$\begin{gathered} 0.002 \\ (0.002) \\ {[0.020]} \end{gathered}$	$\begin{gathered} -0.001 \\ (0.002) \\ {[-0.013]} \end{gathered}$	$\begin{gathered} -0.001 \\ (0.002) \\ {[-0.013]} \end{gathered}$	$\begin{gathered} -0.002 \\ (0.002) \\ {[-0.020]} \end{gathered}$	$\begin{gathered} -0.002 \\ (0.002) \\ {[-0.020]} \end{gathered}$
Accuracy and speed	$\begin{gathered} 0.010 \\ (0.010) \\ {[0.019]} \end{gathered}$	$\begin{gathered} 0.012 \\ (0.010) \\ {[0.021]} \end{gathered}$	$\begin{gathered} 0.012 \\ (0.010) \\ {[0.022]} \end{gathered}$	$\begin{gathered} 0.013 \\ (0.010) \\ {[0.024]} \end{gathered}$	$\begin{gathered} -0.004 \\ (0.018) \\ {[-0.004]} \end{gathered}$	$\begin{aligned} & -0.002 \\ & (0.018) \\ & {[-0.002]} \end{aligned}$	$\begin{aligned} & 0.004 * \\ & (0.002) \\ & {[0.044]} \end{aligned}$	$\begin{aligned} & 0.004 * \\ & (0.002) \\ & {[0.045]} \end{aligned}$	$\begin{gathered} 0.002 \\ (0.002) \\ {[0.020]} \end{gathered}$	$\begin{gathered} 0.002 \\ (0.002) \\ {[0.021]} \end{gathered}$	$\begin{gathered} 0.001 \\ (0.002) \\ {[0.013]} \end{gathered}$	$\begin{gathered} 0.001 \\ (0.002) \\ {[0.013]} \end{gathered}$
Literacy score	$\begin{gathered} 0.123 \\ (0.123) \\ {[0.018]} \end{gathered}$	$\begin{gathered} 0.103 \\ (0.123) \\ {[0.015]} \end{gathered}$	$\begin{aligned} & 0.261^{*} \\ & (0.130) \\ & {[0.038]} \end{aligned}$	$\begin{gathered} 0.235 \\ (0.129) \\ {[0.034]} \end{gathered}$	$\begin{gathered} 0.417 \\ (0.219) \\ {[0.037]} \end{gathered}$	$\begin{gathered} 0.394 \\ (0.219) \\ {[0.035]} \end{gathered}$	$\begin{gathered} 0.031 \\ (0.024) \\ {[0.028]} \end{gathered}$	$\begin{gathered} 0.028 \\ (0.024) \\ {[0.025]} \end{gathered}$	$\begin{gathered} -0.011 \\ (0.023) \\ {[-0.010]} \end{gathered}$		$\begin{gathered} 0.033 \\ (0.022) \\ {[0.029]} \end{gathered}$	0.034 (0.023) [0.029]
Planner	1.266*** (0.108) [0.209]		$\begin{gathered} 0.856 * * * \\ (0.114) \\ {[0.139]} \end{gathered}$		1.469*** (0.192) [0.147]		$\begin{gathered} -0.062 * * \\ (0.021) \\ {[-0.062]} \end{gathered}$		$\begin{gathered} 0.174 * * * \\ (0.020) \\ {[0.173]} \end{gathered}$		$\begin{gathered} 0.160 * * * \\ (0.020) \\ {[0.159]} \end{gathered}$	
Self-control (moderately exercising)	$\begin{gathered} 0.303 * * * \\ (0.056) \\ {[0.099]} \end{gathered}$	$\begin{gathered} 0.292 * * * \\ (0.056) \\ {[0.096]} \end{gathered}$	$\begin{gathered} 0.237 * * * \\ (0.059) \\ {[0.076]} \end{gathered}$	$\begin{gathered} 0.223 * * * \\ (0.058) \\ {[0.072]} \end{gathered}$	$\begin{gathered} 0.379 * * * \\ (0.099) \\ {[0.075]} \end{gathered}$	$\begin{gathered} 0.367 * * * \\ (0.099) \\ {[0.073]} \end{gathered}$	$\begin{gathered} -0.003 \\ (0.011) \\ {[-0.007]} \end{gathered}$	-0.005 (0.011) $[-0.010]$	$\begin{gathered} 0.038 * * * \\ (0.010) \\ {[0.075]} \end{gathered}$	$\begin{gathered} 0.038 * * * \\ (0.011) \\ {[0.075]} \end{gathered}$	$\begin{gathered} 0.018 \\ (0.010) \\ {[0.035]} \end{gathered}$	0.018 (0.010) [0.036]
Fluid intelligence score (number series)	$\begin{gathered} 0.123 * * * \\ (0.032) \\ {[0.081]} \end{gathered}$	$\begin{gathered} 0.115 * * * \\ (0.032) \\ {[0.076]} \end{gathered}$	$\begin{gathered} 0.067 \\ (0.034) \\ {[0.043]} \end{gathered}$	$\begin{gathered} 0.060 \\ (0.034) \\ {[0.039]} \end{gathered}$	$\begin{gathered} 0.094 \\ (0.057) \\ {[0.038]} \end{gathered}$	$\begin{gathered} 0.085 \\ (0.057) \\ {[0.034]} \end{gathered}$	$\begin{gathered} -0.007 \\ (0.006) \\ {[-0.028]} \end{gathered}$	-0.007 (0.006) $[-0.029]$	$0.016^{* *}$ (0.006) [0.064]	$\begin{aligned} & 0.016^{*} \\ & (0.006) \\ & {[0.062]} \end{aligned}$	$\begin{gathered} 0.016 * * \\ (0.006) \\ {[0.062]} \end{gathered}$	$\begin{aligned} & 0.015^{*} \\ & (0.006) \\ & {[0.060]} \end{aligned}$
Non-planner		$\begin{gathered} -1.789 * * * \\ (0.143) \\ {[-0.221]} \end{gathered}$		$\begin{gathered} -1.482 * * * \\ (0.150) \\ {[-0.181]} \end{gathered}$		$\begin{gathered} -2.059 * * * \\ (0.255) \\ {[-0.155]} \end{gathered}$		-0.010 (0.028) $[-0.007]$		$\begin{gathered} -0.184 * * * \\ (0.027) \\ {[-0.137]} \end{gathered}$		$\begin{gathered} -0.152 * * * \\ (0.026) \\ {[-0.113]} \end{gathered}$
Observations	2,410	2,410	2,410	2,410	2,410	2,410	2,410	2,410	2,410	2,410	2,410	2,410
R-squared	0.325	0.330	0.265	0.277	0.209	0.212	0.082	0.078	0.133	0.123	0.190	0.179

 brackets and standardised coefficients in square brackets. *** $\mathrm{p}<0.001$, ${ }^{* *} \mathrm{p}<0.01$, ${ }^{*} \mathrm{p}<0.05$

E Financial Literacy

We also attempt to capture the respondent's financial literacy based on the questions measuring their understanding of the financial products they themselves own. Specifically, following Banks and Oldfield (2007) we look at the propensity to answer 'don't know' to questions about the pension benefit accumulation, the indexation of benefits, and the expected amount of the benefit for those who participate in an employer-sponsored DB pension scheme. Respondents who provided a numerical answer to those questions are interpreted as more financially literate than those who replied 'don't know'. Note that only a small number of individuals answered these questions, reducing the sample to around 550-600 observations. Table E1 shows that in this restricted sample, around 59% are financially literate if we use the knowledge of the pension benefit formula as an indicator, but the shares of financially literate are higher if we instead use the knowledge of the pension indexation rule or the amount of the expected pension benefit, are around 75%.

	Mean (1)	SD (2)	Min (3)	Max (4)	Observations (5)
Financial Literacy 1 (DB pension formula)	0.588	0.493	0.000	1.000	544
Financial Literacy 2 (DB pension indexation)	0.747	0.435	0.000	1.000	596
Financial Literacy 3 (DB pension benefit)	0.751	0.433	0.000	1.000	595

Notes: The sample is based on wave 1 of ELSA.
Table E1: Summary statistics

	DB pension formula		DB pension indexation	DB pension benefit (1)		(2)

The sample is based on wave 1 of ELSA, including only individuals aged 50 to 70 years old. The outcomes for each regression are reported in the title of each column. Regressions in columns (2), (4) and (6) use the survey weights. All regressions control for a female dummy, a white dummy, age group dummies, health status dummies, social class dummies, marital status dummies and whether the respond has any children. Standard errors in round brackets and standardised coefficients in square brackets. ${ }^{* * *} \mathrm{p}<0.001,{ }^{* *} \mathrm{p}<0.01,{ }^{*} \mathrm{p}<0.05$.

Table E2: Predictors of Financial Literacy

[^0]: *We thank Daniel Kamhöfer, Francisco Pitthan, Annekatrin Schrenker and seminar participants at DICE, Spring Meeting of Young Economists 2021, EEA Congress 2021, and VfS Annual Conference 2021 for their helpful comments. This project uses ELSA data, which is funded by the National Institute on Aging (R01AG017644) and by the UK Government Departments, coordinated by the National Institute for Health and Care Research (NIHR). Declarations of interest: none.
 ${ }^{\dagger}$ The University of Bristol, UK; email: stefania.simion@bristol.ac.uk.
 ${ }^{\ddagger}$ Düsseldorf Institute for Competition Economics (DICE), Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany; email: sulka@dice.hhu. de (corresponding author).

[^1]: ${ }^{1}$ The American Psychological Association defines cognitive ability as "the skills involved in performing the tasks associated with perception, learning, memory, understanding, awareness, reasoning, judgment, intuition, and language", thus indicating that cognitive ability should be viewed as a multidimensional trait (see the APA Dictionary of Psychology). Since Spearman (1904), most psychologists organise various dimensions of cognitive ability into a hierarchical order, with more general, higher-order factors being predictive of performance across a wider range of tasks. While there appears to be consensus that a single, first-order factor g is unable to explain all variation in task performance (Horn and McArdle 2007), the precise number of required lower-order factors remains uncertain and is likely context-dependent. For example, Cattell $(1971,1987)$ proposed a very influential distinction between "fluid" and "crystallised" intelligence as two second-order factors, while in a meta-analysis of over 460 studies Carroll (1993) estimates a model with eight second-order factors.

[^2]: ${ }^{2}$ Borghans et al. (2008) provide a comprehensive review of using cognitive abilities and personality traits as explanatory variables in psychology and in economics.

[^3]: ${ }^{3}$ See Lusardi and Mitchell (2014) for a review of an established literature on the measurement of financial literacy and its effects on a range of financial outcomes.
 ${ }^{4}$ There exists some evidence indicating that education interventions improve patience, which would suggest an additional link from financial knowledge to revealed preferences (e.g., Alan and Ertac, 2018). However, to the extent that both financial knowledge and preferences affect financial outcomes via their impact on planning, planning behaviour still captures the combined impact of all three channels.

[^4]: ${ }^{5}$ While the self-control channel reflects the agent's actual ability to carry out a plan, any misperceptions thereof can be captured by the preference channel. For example, in the notation of a quasi-hyperbolic model (Strotz, 1955; Laibson, 1997), the agent's actual present bias β would be reflected in the self-control channel, while their beliefs about future present bias $\hat{\beta}$ would affect their "seemingly optimal" plan via the preference channel.
 ${ }^{6}$ Choi et al. (2010) and Choi et al. (2011) document the prevalence of unambiguously sub-optimal behaviours in the financial domain, but do not test for the association between such tendencies and cognitive ability.

[^5]: ${ }^{7}$ In Appendix B we show that there is no evidence of sample selection based on the available demographics, by comparing the means of the main demographics for the sample with 4,838 individuals to the final sample of 3,743 individuals.

[^6]: ${ }^{8}$ Specifically, we define an individual as belonging to a high social class if their main carer's occupation was as a manager or senior official in someone else's business, professional, technical, or running their own business. We define an individual as belonging to an intermediate social class if their main carer's occupation was administrative, clerical or secretarial, in a skilled trade, or in the armed forces.

[^7]: ${ }^{9}$ Additional details of the derivation of the numeracy index are provided in Appendix C.

[^8]: ${ }^{10}$ As the survey in wave 1 did not collect information on literacy, we use the longitudinal aspect of ELSA to create this measure based on the wave 2 data, collected 2 years afterwards. In particular, we directly use the literacy displayed in the second wave to calculate our literacy score. As a robustness check, we find that the number of correct answers recorded in waves 2 and 5 (i.e., 6 years apart) is exactly the same for 62% of the individuals surveyed in both waves. Thus, since we are using the data collected only 2 years apart, we expect that our extrapolated literacy score is close to the respondent's 'true' literacy at the time of wave 1 . Moreover, given that the within-cohort rank of individual's cognitive ability stabilises already in childhood, and is even more stable over time than the raw test scores (Borghans et al., 2008), we also control for age in our regressions to address any potential concerns related to the extrapolation.

[^9]: ${ }^{11}$ Due to data limitations, in our main results we do not control for the two intermediate nodes illustrated in Figure 1, namely revealed preferences and financial knowledge. For completeness, in Appendix E we consider a proxy for the respondent's financial literacy, which is available for only 15% of our sample. While ELSA included a battery of questions designed to measure the respondent's time and risk preferences, these were asked only to a very small subsample and as late as wave 5 . We therefore do not include the preference measures in our analysis.

[^10]: ${ }^{12}$ Cobb-Clark et al. (2021) develop measures of self-control and one's awareness thereof based on the individual's actual, ideal, and predicted body weight and find that those are indeed correlated with exercising for health reasons, but not for fun. Although ELSA contains two additional measures of physical activity, namely exercising mildly and exercising vigorously, we decided to not include them in our main analysis, as the ability to exercise vigorously is more likely to be confounded by physical ability, health, and income of the respondent. In turn, the examples of mildly vigorous exercises include doing laundry and vacuuming, which also seem questionable as proxies for self-control. Nonetheless, the results using those two measures are available upon request.

[^11]: ${ }^{13}$ As for our channels, Ameriks et al. (2003) and Lusardi and Mitchell (2007) provide compelling evidence against reverse causality between wealth holdings and planning. Similarly, in all regressions we control for a rich array of socio-demographic characteristics, such as health, education, and social class, which should also alleviate concerns about reverse causality between wealth and self-control proxied for by exercising.

[^12]: ${ }^{14}$ For all our outcome measures, it should be noted that accounting for planning and self-control does not affect the predictive power of the demographic variables.

[^13]: ${ }^{15}$ As mentioned before, in Appendix E we define a proxy for an additional channel, financial literacy, using three different measures. The sample available for this channel is very small - around 550-600 observations, depending on which measure we use. Table E2 shows that numeracy is the only statistically significant predictor for all measures of financial literacy (standardised coefficient ranging from 0.13 to 0.20 standard deviations). The results for the financial outcomes, which are available upon request, show that for this restricted sample, only planning is a statistically significant predictor.

[^14]: ${ }^{a}$ The questions comprising the number series test are divided into 5 categories based on their difficulty. A respondent is first asked three 'medium-difficulty' questions and the number of their correct answers determines the difficulty of the subsequent three questions (i.e. each one of potential results 0-3 leads to a different set of followup questions). Examples of the easiest, medium, and most difficult sets of questions are given below:
 (a) $6 \ldots$. . . BLANK . . . 9
 (b) $6 \ldots$ BLANK . . . $4 \ldots 3$
 (c) $5 \ldots 8 \ldots 11 \ldots$ BLANK
 \vdots
 (g) $8 \ldots$ BLANK . . . $12 \ldots 14$
 (h) $23 \ldots 26 \ldots 30 \ldots 35 \ldots$ BLANK
 (i) $18 \ldots 17 \ldots 15 \ldots$ BLANK $\ldots 8$
 \vdots
 (m) BLANK . . . $20 \ldots 26 \ldots 38 \ldots 62$
 (n) $5 \ldots$. . BLANK . . $11 \ldots 19 \ldots 35$
 (o) $70 \ldots$. BLANK . . . BLANK . . 84

 As each respondent is asked precisely six questions, we construct a fluid intelligence score by summing up their correct responses, weighted by their level of difficulty, with weights of $0.5,0.75,1.0,1.25$, and 1.5 . The fluid intelligence score thus varies from 0 to 7.5.

